如何切割銦膜
『壹』 殷鋼(銦鋼)4J36怎樣加工
4J36低膨脹鐵鎳合金/UNS K93601 / UNS K93600/ Fe-Ni36/ Ni36/
具有以下特性
在-250℃和+200℃之間具有極低的熱膨脹系數
很好的塑性內和韌性
應用領域
應用於容需要極低膨脹系數的環境中。
典型應用如下:
液化氣的生產、貯存和運輸
工作溫度低於+200℃以下的測量和控制儀器,如溫度調節裝置
金屬和其他材料間的螺旋連接器襯套
雙金屬和溫控雙金屬
膜式框架
蔭罩
航空工業的CRP 部件回火模具
低於-200℃的人造衛星和導彈電子控制單元框架
激光控制裝置電磁鏡頭中的輔助電子管
4J36 相近牌號
Fe-Ni36(法國)、W. Nr.1.3912、Ni36(德國)、X1NiCrMoCu、N 25-20-7(英國)4J36、UNSK93600恆溫器合金、UNSK93601壓力容器板材(美國)
物理性能
密度
密度:ρ=8.1g/cm3
熔化溫度范圍
熔化溫度范圍: 1430℃
居里溫度
居里溫度: 230 ℃
比熱
比熱:515J/Kg
『貳』 線切割能切金屬銦嗎
一定要用線切割割銦嗎?割倒是能割,這玩意很軟,用壁紙刀都能割動,注意最好不要直接皮膚接觸,銦是有放射性的稀有金屬。
『叄』 殷鋼(銦鋼)4J36怎樣加工謝謝了,大神幫忙啊
4J36低膨復脹鐵鎳合金/UNS K93601 / UNS K93600/ Fe-Ni36/ Ni36/
具有以下特性制
在-250℃和+200℃之間具有極低的熱膨脹系數
很好的塑性和韌性
應用領域
應用於需要極低膨脹系數的環境中。
典型應用如下:
液化氣的生產、貯存和運輸
工作溫度低於+200℃以下的測量和控制儀器,如溫度調節裝置
金屬和其他材料間的螺旋連接器襯套
雙金屬和溫控雙金屬
膜式框架
蔭罩
航空工業的CRP 部件回火模具
低於-200℃的人造衛星和導彈電子控制單元框架
激光控制裝置電磁鏡頭中的輔助電子管
4J36 相近牌號
Fe-Ni36(法國)、W. Nr.1.3912、Ni36(德國)、X1NiCrMoCu、N 25-20-7(英國)4J36、UNSK93600恆溫器合金、UNSK93601壓力容器板材(美國)
物理性能
密度
密度:ρ=8.1g/cm3
熔化溫度范圍
熔化溫度范圍: 1430℃
居里溫度
居里溫度: 230 ℃
比熱
比熱:515J/Kg
『肆』 物理方法制備的膜有哪些用處理
一.光學鍍膜材料(純度:99.9%-99.9999%) 1. 高純氧化物: 一氧化硅、SiO,二氧化鉿、HfO2,二硼化鉿,氯氧化鉿,二氧化鋯、ZrO2,二氧化鈦、TiO2,一氧化鈦、TiO,二氧化硅、SiO2,三氧化二鈦、Ti2O3,五氧化三鈦、Ti3O5,五氧化二鉭、Ta2O5,五氧化二鈮、Nb2O5,三氧化二鋁、Al2O3,三氧化二鈧、Sc2O3,三氧化二銦、In2O3,二鈦酸鐠、Pr(TiO3)2,二氧化鈰、CeO2,氧化鎂、MgO,三氧化鎢、WO3,氧化釤、Sm2O3,氧化釹、Nd2O3,氧化鉍、Bi2O3,氧化鐠、Pr6O11,氧化銻、Sb2O3,氧化釩、V2O5,氧化鎳、NiO,氧化鋅、ZnO,氧化鐵、Fe2O3,氧化鉻、Cr2O3,氧化銅、CuO等。 2. 高純氟化物: 氟化鎂、MgF2,氟化鐿、YbF3,氟化釔、LaF3,氟化鏑、DyF3,氟化釹、NdF3,氟化鉺、ErF3,氟化鉀、KF,氟化鍶、SrF3,氟化釤、SmF3,氟化鈉、NaF,氟化鋇、BaF2,氟化鈰、CeF3,氟化鉛等。 4. 混合料: 氧化鋯氧化鈦混合料,氧化鋯氧化鉭混合料,氧化鈦氧化鉭混合料,氧化鋯氧化釔混合料,氧化鈦氧化鈮混合料,氧化鋯氧化鋁混合料,氧化鎂氧化鋁混合料,氧化銦氧化錫混合料,氧化錫氧化銦混合料,氟化鈰氟化鈣混合料等混合料 3. 高純金屬類: 高純鋁,高純鋁絲,高純鋁粒,高純鋁片,高純鋁柱,高純鉻粒,高純鉻粉,鉻條,高純金絲,高純金片,高純金,高純金粒,高純銀絲,高純銀粒,高純銀,高純銀片,高純鉑絲,高純鉿粉,高純鉿絲,高純鉿粒,高純鎢粒,高純鉬粒,高純單晶硅,高純多晶硅,高純鍺粒,,高純錳粒,高純鈷,高純鈷粒,高純鉬,高純鉬片,高純鈮,高純錫粒,高純錫絲,高純鎢粒,高純鋅粒,高純釩粒,高純鐵粒,高純鐵粉,海面鈦,高純鋯絲,高純鋯,海綿鋯,碘化鋯,高純鋯粒,高純鋯塊,高純碲粒,高純鍺粒, 高純鈦片,高純鈦粒,高純鎳,高純鎳絲,高純鎳片,高純鎳柱,高純鉭片,高純鉭,高純鉭絲,高純鉭粒,高純鎳鉻絲,高純鎳鉻粒,高純鑭,高純鐠,高純釓,高純鈰,高純鋱,高純鈥,高純釔,高純鐿,高純銩,高純錸,高純銠,高純鈀,高純銥等. 5. 其他化合物: 鈦酸鋇,BaTiO3,鈦酸鐠,PrTiO3,鈦酸鍶,SrTiO3,鈦酸鑭,LaTiO3,硫化鋅,ZnS,冰晶石,Na3AlF6,硒化鋅,ZnSe,硫化鎘。 6. 輔料: 鉬片,鉬舟、鉭片、鎢片、鎢舟、鎢絞絲。
『伍』 鍍銦膜鍍好後為什麼表面有一層白色粉末狀物質
白色粉末狀物抄質那也是純銦,襲不是氧化物,主要問題在於鍍銦電化學沉積特性,隨著厚度增加鍍層結構越鬆散,膜層薄時不明顯,等到膜層越來越厚,粉末狀外觀越明顯,所以鍍銦通常使用熱固溶方式做後處理,單純的鍍銦沒有實用價值。如果要鍍好看又要緊密,目前唯有採用真空濺射的方式。
『陸』 誰知道銦的具體特性
常溫下金屬銦不易被空氣氧化,從常溫到熔點(156.61℃)之間,在100℃左右時銦開始氧化,表面形成極薄的氧化膜,溫度更高時,能與氧、鹵素、硫、硒、碲、磷反應,銦能與汞形成汞齊
『柒』 鍍銦問題
銦膜很容易脫落的,所以粘不結實。你可以選擇粘在一起再進行鍍膜,如果那小塊不需要鍍可以用膠帶遮住。清潔最好用乙醇或酒量!希望可以幫到你!
『捌』 氧化銦錫透明導電膜玻璃如何預處理
採用直流磁控濺射技術在玻璃襯底上制備了摻錫氧化銦(ITO)透明導電薄膜,通過XRD、XPS、四專探針儀和分光光度屬計等測試方法,研究了沉積速率對ITO薄膜微觀結構和光電性能的影響.實驗結果表明:ITO樣品為具有(222)擇優取向的立方錳鐵礦結構,其晶體結構和光電性能明顯受到沉積速率的影響.當沉積速率為4 nm/min時,所制備的ITO薄膜具有最大的晶粒尺寸(32.5 nm)、最低的電阻率(1.1×10-3Ω·cm)、最高的可見光區平均透過率(86.4%)和最大的優良指數(7.9×102 S·cm-1),其光電綜合性能最佳.同時採用Tauc法則計算了ITO薄膜的光學能隙,結果
『玖』 誰知道真空鍍膜 鍍銦 怎麼鍍
因為銦很軟,如果用長條型的會在蒸發時漏掉,導致鍍你不上去,漏斗型的可以在樓下去的時候在鎢絲底部接住,繼續蒸發,上鍍性好些!
『拾』 銦的研究與利用
一、銦的資源狀況
到20世紀90年代初為止,美國已探明銦儲量1萬噸左右,秘魯、瑞典、南非、加拿大等國均為數千噸(中國地質礦產信息研究院,1993)。
銦資源主要產地有秘魯、玻利維亞、加拿大、俄羅斯、中國、法國、比利時、英國、美國和日本等,大部分富銦礦床都產於環太平洋帶。加拿大的Mount Pleasant錫多金屬礦床就擁有數千噸銦,1998年投產後年產銦25t,產錫3500t。俄羅斯的富銦礦床產於遠東地區。美國和日本是全世界銦消費大國,對銦資源非常重視,20多年來一直重視對銦資源的勘查和保護,相繼也有不少富銦礦床發現,如日本的鹿兒島、苗木、豐羽、Toyoha、Nakakoshi等礦床,是日本有名的富銦礦床。我國銦的潛在資源相當豐富,全國16個省區都有富銦礦床發現,已探明銦儲量近2萬噸,遠景儲量大於10萬噸,80%以上的儲量分布在廣西、雲南、內蒙古、廣東四省區(四省區25處富銦礦床中,大、中型富銦礦床12處,小型3處,探明儲量1萬多噸,佔全國銦儲量的80%以上),其中以廣西和雲南居首,僅位於南嶺西段的大廠礦田銦儲量達6000噸以上,都龍錫鋅礦床銦儲量達4000多噸,個舊錫礦銦儲量達2000多噸,同一地區的白牛廠錫多金屬礦床也是一個超大型富銦礦床。研究顯示,內蒙古東部地區的孟恩陶勒蓋、大井、布敦化、白音諾、鬧牛山、敖腦達巴等錫-鉛-鋅-銀多金屬礦床也含有很高的銦,孟恩陶勒蓋礦床銦儲量達400多噸,該區有可能成為我國另一個重要的富銦礦床密集區。
過去認為銦主要從鉛鋅礦床中回收,其實並非所有的鉛鋅礦床都富銦,其中一個重要原因是由於銦資源的稀少,故把鉛鋅礦石中銦的回收指標定得很低(5×10-6~10×10-6,全國礦產儲量委員會辦公室,1987)。我們所說的富銦礦床,是指銦在礦床中大量富集了的礦床,礦石中一般銦含量在(50~100)×10-6以上,閃鋅礦(為主要含銦金屬礦物)為(500~3000)×10-6,甚至更高。
處於環太平洋帶中的印度尼西亞、馬來西亞等國,產出有世界著名的錫石硫化物礦床,但是這些國家由於工業發現的滯後,對銦的研究與開發也相對薄弱,相信這些地區的銦具有巨大的資源潛力等待開發利用。
二、銦的應用及需求
從銦的發現到1950年以前的近100年中,銦的研究和利用與它的量一樣的稀少,人們對銦的重視是與世界工業發展同步的。隨著工業的快速發展,銦的應用除傳統的半導體、無線電、焊料、粘合劑和密封合金、機電合金等領域外,其用途正在快速發展。目前,銦在新半導體合金、太陽能電池、光纖通訊、原子能、航天技術、計算機、電視機以及防腐等方面都得到廣泛的應用,並且,新技術、新用途還在不斷地被開發和研製出來。
隨著銦的用途的快速拓展,全世界銦的產量也在直線上升,1924年全世界產銦僅1kg,到了1980年,銦產量達到了45.5t,1990年達133t,1995年為197t,1998年為215t,1999年為235t,2000年超過了300t。中國既是世界銦資源大國,也是世界產銦大國,從1954年開始從多金屬礦石中回收銦,至1990年產量達11t,1997年為35t,1998年為48t,1999年為60t,2000年有6家冶煉廠生產銦,全年銦產量達到了115t。國內銦的消費量不足2t,深加工能力非常薄弱。隨著產量的增加和急功近利的影響,中國成了銦出口大國,1998年出口23.737 t,1999年出口41.92 t,2000年出口50 t,致使國際銦金屬價格從90年代初的近40萬美元/t,至2000年初銳降至60萬元人民幣/t,最近兩年銦價格的下降仍在繼續。這種貴重戰略性金屬的廉價出口引發了工業發達國家對銦的大量囤積。
由於銦的特殊物理性能,其應用范圍正在快速擴大,特別是近10年來,許多新技術、新領域的發展對銦的需求量在不斷增加。歸納起來,目前銦主要應用於以下方面:
(1)低熔點銦合金材料領域 銦低熔點合金具有良好的機械性能,防腐蝕,高導,常用作低電阻接點材料、低壓冷焊劑等方面。銦的二元或三元低熔點合金具有較高的高溫抗拉強度和抗疲勞強度,銦合金焊料比鉛-錫及金-錫焊料更高級。由於銦材料在低溫下具有良好的延展性,用於登月艙,著陸時的可靠性大大加強,不脆化、不開裂。目前銦合金的類型也在不斷增加。
(2)半導體領域 銦在半導體領域的應用最早最廣,可作為半導體鍺及晶體管、電子管的摻合劑、接觸劑和焊料。銦常用來生產銻化銦、磷化銦、砷化銦等半導體材料,研究和應用最早的是銻化銦,目前最有前景的是磷化銦,在通訊激光光源、太陽能電池等方面展現了可喜的前景。銻化銦和砷化銦主要用於紅外探測、光磁器件及太陽能轉換器等方面。
(3)硒銦銅多晶薄膜太陽能電池 該項技術是在20世紀80年代開發成功的,具有熱轉換率高,成本低廉,性能優越和生產工藝簡單的特點。
(4)原子能領域 銦能夠敏感地感測中子輻射,因此原子能工業中用於監控材料,其用量之大,與電子工業相當。
(5)防腐蝕領域 銦具有很好的防腐蝕性能是由日本三井金屬礦業公司在研究減少防腐劑中水銀的用量時發現的。現在日本所有的電池生產廠家利用銦徹底解決了腐蝕問題。電池中使用的鋅粉腐蝕產生氫氣,降低電池性能和壽命。原來用於防腐的水銀產生無法處理的環境污染。1984年日本開始研究用銦替代水銀,1992年實現了電池無水銀化,為銦開辟了新的用途。據劉世友(2001)資料,在此新用途中,銦的添加量為100×10-6,日本在此項應用中,1992年消費銦2 t,1993年和1994年各消費銦3 t,此後逐年上升。
(6)光纖通訊市場的應用 磷化銦現已用於光纖通訊領域,主要用作生產半導體銦-鎵-砷化物-磷化物的襯底,以提高光纖性能和穩定性。
(7)電視顯像管電子槍 在顯像管電子槍生產中,以銦代替鈧,一方面降低成本,同時有利於大功率輸出,延長壽命。
(8)銦錫氧化物(ITO)方面的應用 ITO可見光透過率>95%,紫外線吸收率>70%,對微波衰減率>85%,導電和加工性能良好,耐磨,耐化學腐蝕,因此其用途極為廣泛。
ITO是目前銦消費的最大市場。日本是全世界銦的最大消費國,佔全世界銦消費量的70%以上,1995年的數字表明,當年日本共消費銦92t,其中52t用於ITO。ITO主要用於薄膜晶體管(TFT)、液晶顯示器(LCD)及等離子顯示器的生產,傳統CRT顯示器的陰極射線管也需要數量可觀的銦,ITO在這方面的應用目前還沒有可替代品。
銦在其他方面還有很多用途。例如,由於銦具有強抗腐蝕性及對光的強反射能力,用於製作船艦的反射鏡,既可保持長久光亮,又能抵抗海水侵蝕;利用銦的低熔點特性製成特殊合金,用於消防系統的斷路保護裝置及自動控制裝置。另外,銦用作耐磨軸承、牙科合金、鋼鐵和有色金屬的防腐裝飾材料及傳統首飾等。ITO還用於建築玻璃、車輛玻璃等的去霧劑和除霜劑等。
2000年以前,全世界銦的需求量以每年4%~5%的速度增長,2000年至2001年,增長速度已達10%~15%。據估計,未來幾年,隨著個人計算機的進一步普及,尤其是不遠的將來大屏幕液晶及等離子電視進入千家萬戶,銦的需求量將飛速增長。因此,做好銦資源的勘查和研究、加強銦應用技術的研究及銦的儲備是保證在不遠的將來有備無患的關鍵。
三、銦資源的研究現狀綜述
世界各國學者對銦元素的研究已進行了半個多世紀,在兩個領域作出了重大貢獻,其一為銦的地球化學性質、銦在地球各類岩石和礦物及隕石中的含量、銦的富集成礦,全世界已有一大批(富)銦礦床被發現;其二為銦元素的應用,目前銦大量用於無線電、航天技術、高性能合金材料研製等新用途中,銦的需求量也在不斷增加,這又反過來促進了銦資源的研究。所以從20世紀50年代開始至今,一些發達國家對銦成礦學的研究從未停止,已取得了巨大進展,並且有越來越重視的趨勢。
對銦元素的大量研究開始於20世紀50年代。這一時期的研究者主要是西方學者,研究重點為銦元素的地球化學性質(Shaw,1952,1957;Fleischer et al.,1955),In-In3S2的熱動力學的研究(Thompson et al.,1954)、侵入岩岩石及礦物中銦的研究(Wager et al.,1958)、硫化物中包括銦在內的微量元素的研究(Fleischer,1955)等,可以說是這一時期的代表。這些研究大致釐定了銦在各類岩石中的分布,為後來對銦的研究奠定了基礎。
20世紀60~70年代,蘇聯學者將銦的研究推向高潮,他們詳細研究了前蘇聯境內銦在不同岩石和不同礦床中的分布,發現了一批富銦礦床,而且在銦的地球化學方面提出「地球化學星」的概念(Иванов,1963)並作了一些銦的富集與Eh值及溫度關系的實驗(Иванов,1966);發現礦石中含錫越高,硫化物中銦含量越高,銦的富集與高溫成礦條件有關;對不同時代岩石和礦床中銦的研究發現,從老到新,銦含量有所升高;出版了《分散元素礦床》一書(Ivanov et al.,1977);不少學者將銦與其它分散元素及成礦主元素如Zn、Fe等結合來探索礦床成因及綜合利用,認為硫化物礦床中的In對礦床成因有指示意義並具有工業綜合利用價值(Beus et al.,1960;Ganeev et al,1961;Иванов,1966;Ivanov,1968;Shtereberg et al.,1967)。這一時期其他西方國家的學者也作了不少研究工作,如Boorman等(1967)對Mount Pleasant錫礦中銦的研究、Caley等(1967)對墨西哥西部錫礦中銦的研究等,Chakrabarti(1967)的研究就將硫化物礦床中的微量元素與成礦聯系起來,而另一些西方學者更進一步研究了銦在隕石、不同岩石中的含量。
80~90年代,蘇聯學者繼續加強對銦的研究,隨之一些富銦礦床相繼又被發現(戈涅弗楚克,1991)。Greta(1980)對保加利亞7個煤礦中銦的研究有獨到之處,研究發現,煤中含銦很高,部分煤樣含銦(20~167)×10-6,個別樣品含銦大於1000×10-6,區內多金屬礦床含錫富銦。在瑞典、法國、加拿大、美國都先後發現了銦礦床或銦礦體的報道(Johan,1988;Marao et al.,1992;Kieft et al.,1990)。這一時期日本學者對銦富集成礦的研究取得了巨大進展,在苗木、鹿兒島、豐羽、Toyoha、Nakakoshi等地都發現了銦礦體和礦床,使日本的銦資源躍居世界前列(村尾智等,1990;Murao Satoshi et al.,1991;Marao et al.,1992;太田英順,1993;Tsushima et al.,1999),Nakakoshi礦床閃鋅礦和含Cu-Fe-Zn-Sn-S的硫鹽類礦物含銦1.8%~16.3%,礦石含銦0.02%,構成典型的銦礦床(Tsushima et al.,1999)。同時,國外學者對銦成礦作用的研究明顯加強,相繼進行了銦存在形式的研究(Johan,1988)、含銦礦物合成試驗研究(Raudsepp et al.,1987)、玄武岩、硫化物和地幔中銦和錫關系的研究(Yi Wen et al.,1995)等。隨著研究的深入,一些新的銦礦物也被發現,到1980年為止,全世界共發現銦礦物5種,近20年中又發現了3種,還有三種未定名的銦礦物,使銦礦物數量增至11種。
20世紀70年代,以前我國學者對銦的研究較少,僅見到為數不多的文獻中有少量銦的資料,並被後來的研究證實銦含量的可靠性存在一些問題。80 年代以來,國內對銦元素研究開始增多,但研究的主要對象為錫銅鉛鋅硫化物礦床,研究的方法主要是礦石中多種微量元素的綜合研究,雖然每一位學者都要討論銦元素的綜合利用價值,但沒有針對銦富集與成礦機理的專門研究,沒有把銦作為一個礦種加以研究。在這期間,塗光熾等(1984)對我國三十多個層控鉛鋅礦床的研究,童潛明(1984)對湖南10多個鉛鋅礦床的研究,國外如 Pankratiev 等(1981)對烏茲別克共和國產於沉積岩和火山岩中的層狀鉛鋅礦床中微量元素的研究,葉慶同(1982)對銀山、凡口、東坡、桃林四個礦床閃鋅礦成分的研究及Song Xuexin(1984)對廣東凡口鉛鋅礦床微量元素的研究等,展示出了我國一些鉛鋅礦床中銦等微量元素的含量特點。塗光熾等(1993)在《中國礦床》上冊「中國的鉛鋅礦床」一章中系統地總結和論述了包括我國幾乎所有類型鉛鋅礦床中銦的含量特徵,除同生沉積、後期改造型礦床外,矽卡岩型、岩漿熱液型鉛鋅礦床閃鋅礦中銦等微量元素在上述類型鉛鋅礦床中的分布特點。章振根等(1981)、李錫林等(1981)、黃明智等(1988)對廣西大廠礦田分散元素進行了綜合研究,指出大廠礦田的銦是有利用價值的分散元素之一。Zhang Qian(1987)在對國內外60多個鉛鋅礦床微量元素的研究和調研,發現除一些含錫的鉛鋅礦床外,不含錫的礦床含銦都很低,大部分改造成因及同生沉積成因的鉛鋅礦床,銦沒有太大的工業利用價值,同時,將包括 In在內的分散元素的某些特徵直接與礦床成因聯系起來,製作的圖表示蹤模式,對幾乎所有的鉛鋅硫化物礦床,都可判斷其改造、同生沉積與中高溫熱液成因。劉英俊等(1984)對銦元素地球化學的研究,肯定了銦在熱液作用的沉澱階段大量進入四面體晶格配位的硫化物中,具有這種晶格配位的閃鋅礦在硫化物礦床中量大面廣,因而是富集銦的最佳礦物,這一成果從晶體結構方面闡明了銦大量進入閃鋅礦的機理。但從絕大多數鉛鋅礦床中閃鋅礦並不富銦的現象來看,銦進入閃鋅礦是有條件的。
中國地質礦產信息研究院(1993)主編的《中國礦產》一書明確提出了銦礦床的概念。塗光熾院士明確提出了分散元素可以形成礦床的理論。隨著未來我國對銦需求的增長,國家對銦資源的研究與利用已引起重視,銦富集成礦的一些問題已有了初步認識。