鈦怎麼焊接和切割
⑴ 鈦板怎麼焊接
鈦材來可以用直流氬弧焊焊接。自需要注意的是,根據鈦材的材質匹配對應的純鈦及鈦合金焊絲質量一定要保證,這個是前提,另外在焊接的時候需要控制好溫度不能夠太高,最重要的一點就是氣體保護的純度一定要高,並且保護罩做的要好,保證焊接的過程中保護充分。
⑵ 鈦合金怎麼焊接
目前針對TC4鈦合金,多採用氬弧焊或等離子弧焊進行焊接加工,但該兩種方法均需填充焊接材料,由於保護氣氛、純度及效果的限制,帶來接頭含氧量增加,強度下降,且焊後變形較大。採用電子束焊接和激光束焊接,研究了TC4鈦合金的焊接工藝性,實現該種材料的精密焊接。
(1) 焊縫氣孔傾向。焊縫中的氣孔是焊接鈦合金最普遍的缺陷,存在於被焊金屬電弧區中的氫和氧是產生氣孔的主要原因。TC4鈦合金電子束焊接,其焊縫中氣孔缺陷很少。為此,著重就激光焊接焊縫中形成氣孔的工藝因素進行研究。
由試驗結果可以看出,激光焊接時焊縫中的氣孔與焊縫線能量有較密切關系,若焊接線能量適中,焊縫內只有極少量氣孔、甚至無氣孔,線能量過大或過小均會導致焊縫中出現嚴重的氣孔缺陷。此外,焊縫中是否有氣孔缺陷還與焊件壁厚有一定關系,比較試樣試驗結果可看出,隨著焊接壁厚的增加,焊縫中出現氣孔的概率增加。
(2) 焊縫內部質量。利用平板對接試樣,採用電子束焊接和激光焊接來考察焊縫內部質量,經理化檢測,焊縫內部質量經X射線探傷,達GB3233-87 II級要求,焊縫表面和內部均無裂紋出現,焊縫外觀成型良好,色澤正常。
(3) 焊深及其波動情況。鈦合金作為工程構件使用,對焊深有一定要求,否則不能滿足構件強度要求;而且要實現精密焊接,必須對焊深波動加以控制。為此,採用電子束焊接和激光焊接方法分別焊接了兩對對接試環,焊後對試環進行了縱向及橫向解剖,來考察焊深及焊深波動情況,結果表明,電子束焊接焊縫平均焊深可達2.70mm以上,焊深波動幅度為-5.2~+6.0%,不超過±10%;激光焊接焊縫平均焊深約為2.70mm,焊深波動幅度為- 3.8~+5.9%,不超過±10%。
(4) 接頭變形分析。利用對接試環來考察接頭焊接變形,檢測了對接試環的徑向及軸向變形,結果表明,電子束焊接和激光焊接的變形都很小。電子束焊接的徑向收縮變形量為f 0.05~f 0.09mm,軸向收縮量為0.06~0.14mm;激光焊接的徑向收縮變形量為f 0.03~f 0.10mm,軸向收縮變形量為0.02~0.03mm。
(5) 焊縫組織分析。經理化檢測,焊縫組織為a+b,組織形態為柱狀晶+等軸晶,有少量的板條馬氏體出現,晶粒度與基體接近,熱影響區較窄,組織形態和特徵較為理想
⑶ 鈦合金的焊接方法是什麼
自己的總結,希望對你有用,鈦合金的焊接:
1、焊接方法:以GTAW為主,純鈦焊接的話焊絲 ERTi-1/2等,鈦合金的話用鈦合金焊絲。。。
2、焊接清理:鈦焊接過程對坡口表面和附近的污物非常敏感,故焊接前坡口及兩側至少20mm范圍內應使用丙酮清理干凈並在乾燥後焊接。。。
3、氣體保護:鈦材料的焊接用使用99.99%Ar作為保護氣,氣體露點-40度以下;坡口正面與反面都應該使用保護氣,保護拖罩應保證焊縫金屬顏色為銀白色或者金黃色。如果出現蘭色則應加大加長保護氣拖罩。。。
4、焊接電流:一般小電流焊接對焊縫質量最有好處,一般的厚度90-120A為合適,有效率也能保證質量,如果特別薄的材料,需要進一步降低電流。。。
5、鈦焊縫檢驗,肉眼檢測無缺陷後用PT檢測,不得存在氣孔、裂紋等缺陷;依據圖紙要求RT。。。
⑷ 鈦合金和不銹鋼怎麼焊接
1
鈦及鈦合金/不銹鋼的焊接性分析
1.1
鈦及鈦合金的焊接性
鈦及鈦合金的化學活性大,400℃以上時即使在固態情況下也極易被空氣、水分、油脂、氧化皮等污染,吸收O、N、H、C等,使焊接接頭的塑性及沖擊韌度下降,並易引起氣孔;其熔點高、熱容量小、熱導率小的特點,使焊接接頭易產生過熱組織,晶粒變得粗大,特別是β鈦合金,易引起塑性降低;溶解於鈦中的氫在320℃時和鈦會發生共析轉變,析出TiH
,
引起金屬塑性和沖擊韌度的降低,同時發生體積膨脹而引起較大的應力,嚴重時會導致冷裂紋產生;氫在鈦中的溶解度隨溫度升高而下降,焊接時沿熔合線附近加熱溫度高,會引起氫
的析出,因此氣孔常在熔合線附近形成;鈦及鈦合金的彈性模量相對較小所以焊接殘余變形較大,並且焊後變形的矯正也較為困難。
1.2
不銹鋼的焊接性
由於不銹鋼本身所具有的特性,與普碳鋼相比不銹鋼的焊接及切割有其特殊性,更易在其焊接接頭及其熱影響區(HAZ)產生各種缺陷。焊接時要特別注意不銹鋼的物理性質。馬
氏體型不銹鋼進行焊接時,由於熱影響區中被加熱到相變點以上的區域內發生a-r(M)相變,因此存在低溫脆性、低溫韌性惡化、伴隨硬化產生的延展性下降等問題。一般來講鐵素
體型不銹鋼有475℃脆化、700~800℃長時間加熱下發生σ相脆性、夾雜物和晶粒粗化引起的脆化、低溫脆化、碳化物析出引起耐蝕性下降以及高合金鋼中易發生的延遲裂紋等問題。奧
氏體型不銹鋼一般具有良好的焊接性能,但其中鎳、鉬含量高的高合金不銹鋼進行焊接時易產生高溫裂紋。另外還易發生σ相脆化,在鐵素體生成元素的作用下生成的鐵素體易引起低
溫脆化,以及耐蝕性下降和應力腐蝕裂紋等缺陷。經焊接後,焊接接頭的力學性能一般良好,但當在熱影響區中的晶界上有鉻的碳化物時極易生成貧鉻層,而貧鉻層的出現在使用過程
中易產生晶間腐蝕。雙相不銹鋼的焊接裂紋敏感性較低,但在熱影響區內鐵素體含量的增加會使晶間腐蝕敏感性提高,因此可造成耐蝕性降低及低溫韌性惡化等問題。
1.3
鈦及鈦合金與不銹鋼的綜合焊接性
鈦及鈦合金與不銹鋼的物理和化學性能差異顯著,連接時易在接頭處形成脆性相和較大的內應力,導致接頭極易開裂,而且在密度、比熱、線膨脹系數、導熱系數等物理性能和力
學性能上均有較大差異,必然會降低鈦及鈦合金/鋼連接的牢固性,即使在固態連接方法下,由於線膨脹系數差別較大,也會在焊接接頭中引起較大焊接的殘余應力,降低接頭性能。鈦
的化學活性強,在高溫下,對氧、氮、氫具有較高的化學親和力,易形成脆性化合物,使強度顯著提高,而塑性和韌性急劇下降,顯著地增加脆性斷裂傾向及裂紋形成。鈦還易與許多其它金屬形成金屬間化合物,鈦與鐵易形成金屬間化合物TiFe和TiFe
。鈦/鋼焊接時,由於鋼中存在的Ni、Cr、C等
元素也能與Ti形成TiNi、TiNi、TiNi、TiCr、TiC等多種金屬間化合物脆性相,使焊縫更脆,性能進一步降低。
⑸ 鈦材怎麼焊
鈦材可以用直流氬弧焊焊接。
需要注意的是,根據鈦材的材質匹配對應的純鈦及內鈦合金焊絲質量容一定要保證,這個是前提,另外在焊接的時候需要控制好溫度不能夠太高 ,最重要的一點就是氣體保護的純度一定要高 ,並且保護罩做的要好,保證焊接的過程中保護充分。
⑹ 鈦合金如何進行焊接,有哪些需要注意的地方
目前針對TC4鈦合金,多採用氬弧焊或等離子弧焊進行焊接加工,但該兩種方法均需填充焊接材料,由於保護氣氛、純度及效果的限制,帶來接頭含氧量增加,強度下降,且焊後變形較大。採用電子束焊接和激光束焊接,研究了TC4鈦合金的焊接工藝性,實現該種材料的精密焊接。
(1) 焊縫氣孔傾向。焊縫中的氣孔是焊接鈦合金最普遍的缺陷,存在於被焊金屬電弧區中的氫和氧是產生氣孔的主要原因。TC4鈦合金電子束焊接,其焊縫中氣孔缺陷很少。為此,著重就激光焊接焊縫中形成氣孔的工藝因素進行研究。
由試驗結果可以看出,激光焊接時焊縫中的氣孔與焊縫線能量有較密切關系,若焊接線能量適中,焊縫內只有極少量氣孔、甚至無氣孔,線能量過大或過小均會導致焊縫中出現嚴重的氣孔缺陷。此外,焊縫中是否有氣孔缺陷還與焊件壁厚有一定關系,比較試樣試驗結果可看出,隨著焊接壁厚的增加,焊縫中出現氣孔的概率增加。
(2) 焊縫內部質量。利用平板對接試樣,採用電子束焊接和激光焊接來考察焊縫內部質量,經理化檢測,焊縫內部質量經X射線探傷,達GB3233-87 II級要求,焊縫表面和內部均無裂紋出現,焊縫外觀成型良好,色澤正常。
(3) 焊深及其波動情況。鈦合金作為工程構件使用,對焊深有一定要求,否則不能滿足構件強度要求;而且要實現精密焊接,必須對焊深波動加以控制。為此,採用電子束焊接和激光焊接方法分別焊接了兩對對接試環,焊後對試環進行了縱向及橫向解剖,來考察焊深及焊深波動情況,結果表明,電子束焊接焊縫平均焊深可達2.70mm以上,焊深波動幅度為-5.2~+6.0%,不超過±10%;激光焊接焊縫平均焊深約為2.70mm,焊深波動幅度為- 3.8~+5.9%,不超過±10%。
(4) 接頭變形分析。利用對接試環來考察接頭焊接變形,檢測了對接試環的徑向及軸向變形,結果表明,電子束焊接和激光焊接的變形都很小。電子束焊接的徑向收縮變形量為f 0.05~f 0.09mm,軸向收縮量為0.06~0.14mm;激光焊接的徑向收縮變形量為f 0.03~f 0.10mm,軸向收縮變形量為0.02~0.03mm。
(5) 焊縫組織分析。經理化檢測,焊縫組織為a+b,組織形態為柱狀晶+等軸晶,有少量的板條馬氏體出現,晶粒度與基體接近,熱影響區較窄,組織形態和特徵較為理想。
經研究可得出:對於TC4鈦合金,無論是激光焊接還是電子束焊接,只要工藝參數匹配合理,均可使焊縫內部質量達到國標GB3233-87Ⅱ級焊縫要求,實現TC4鈦合金的精密焊接;焊縫外觀成形良好,色澤正常;焊縫余高很小,無咬邊、凹陷、表面裂紋等缺陷產生。
⑺ 鈦管怎樣焊接
鈦管道焊接工藝是在大氣中採用手工鎢極惰性氣體保護焊(
GTAW
)
焊接方法。焊前內對鈦管坡口及其兩側各25mm以內容的內外表面清除油污後,應用奧氏體不銹鋼絲刷、鉸刀等機械方法清除其氧化膜、毛刺和表面缺陷。清理工具應專用,並保持清潔;經機械清理後坡口的表面和填充焊絲,焊接前應使用不含硫的丙酮或乙醇進行脫脂處理。焊接過程中,
採用特殊的保護措施,
使鈦管焊接區域溫度可能超過400℃部位的局部或全部處於氬氣的有效保護之中,
達到鈦管焊接的目的。
施工准備→材料驗收→劃線檢驗→下料及坡口加工→坡口周邊處理→焊件組對→焊接→焊縫外觀檢查→焊縫P
T
、RT探傷→預制管段水壓試驗→排水、乾燥→管口封閉運輸→現場組裝。
⑻ 不銹鋼跟鈦合金怎麼焊接
1
鈦及鈦合金/不銹鋼的焊接性分析
1.1
鈦及鈦合金的焊接性
鈦及鈦合金的化學活性大,400℃以上時即使在固態情況下也極易被空氣、水分、油脂、氧化皮等污染,吸收o、n、h、c等,使焊接接頭的塑性及沖擊韌度下降,並易引起氣孔;其熔點高、熱容量小、熱導率小的特點,使焊接接頭易產生過熱組織,晶粒變得粗大,特別是β鈦合金,易引起塑性降低;溶解於鈦中的氫在320℃時和鈦會發生共析轉變,析出tih
,
引起金屬塑性和沖擊韌度的降低,同時發生體積膨脹而引起較大的應力,嚴重時會導致冷裂紋產生;氫在鈦中的溶解度隨溫度升高而下降,焊接時沿熔合線附近加熱溫度高,會引起氫
的析出,因此氣孔常在熔合線附近形成;鈦及鈦合金的彈性模量相對較小所以焊接殘余變形較大,並且焊後變形的矯正也較為困難。
1.2
不銹鋼的焊接性
由於不銹鋼本身所具有的特性,與普碳鋼相比不銹鋼的焊接及切割有其特殊性,更易在其焊接接頭及其熱影響區(haz)產生各種缺陷。焊接時要特別注意不銹鋼的物理性質。馬
氏體型不銹鋼進行焊接時,由於熱影響區中被加熱到相變點以上的區域內發生a-r(m)相變,因此存在低溫脆性、低溫韌性惡化、伴隨硬化產生的延展性下降等問題。一般來講鐵素
體型不銹鋼有475℃脆化、700~800℃長時間加熱下發生σ相脆性、夾雜物和晶粒粗化引起的脆化、低溫脆化、碳化物析出引起耐蝕性下降以及高合金鋼中易發生的延遲裂紋等問題。奧
氏體型不銹鋼一般具有良好的焊接性能,但其中鎳、鉬含量高的高合金不銹鋼進行焊接時易產生高溫裂紋。另外還易發生σ相脆化,在鐵素體生成元素的作用下生成的鐵素體易引起低
溫脆化,以及耐蝕性下降和應力腐蝕裂紋等缺陷。經焊接後,焊接接頭的力學性能一般良好,但當在熱影響區中的晶界上有鉻的碳化物時極易生成貧鉻層,而貧鉻層的出現在使用過程
中易產生晶間腐蝕。雙相不銹鋼的焊接裂紋敏感性較低,但在熱影響區內鐵素體含量的增加會使晶間腐蝕敏感性提高,因此可造成耐蝕性降低及低溫韌性惡化等問題。
1.3
鈦及鈦合金與不銹鋼的綜合焊接性
鈦及鈦合金與不銹鋼的物理和化學性能差異顯著,連接時易在接頭處形成脆性相和較大的內應力,導致接頭極易開裂,而且在密度、比熱、線膨脹系數、導熱系數等物理性能和力
學性能上均有較大差異,必然會降低鈦及鈦合金/鋼連接的牢固性,即使在固態連接方法下,由於線膨脹系數差別較大,也會在焊接接頭中引起較大焊接的殘余應力,降低接頭性能。鈦
的化學活性強,在高溫下,對氧、氮、氫具有較高的化學親和力,易形成脆性化合物,使強度顯著提高,而塑性和韌性急劇下降,顯著地增加脆性斷裂傾向及裂紋形成。鈦還易與許多其它金屬形成金屬間化合物,鈦與鐵易形成金屬間化合物tife和tife
。鈦/鋼焊接時,由於鋼中存在的ni、cr、c等
元素也能與ti形成tini、tini、tini、ticr、tic等多種金屬間化合物脆性相,使焊縫更脆,性能進一步降低。