當前位置:首頁 » 數控儀器 » 磁共振儀器什麼時候造出來

磁共振儀器什麼時候造出來

發布時間: 2021-02-21 14:31:46

㈠ 磁共振成像的發展歷程

1978 年底,第一套磁共振系統在位於德國埃爾蘭根的西門子研究基地的一個小木屋中誕生。 1979 年底,當系統終於可以工作時,它的第一件作品是辣椒的圖像。第一張人腦影像於 1980年 3 月獲得,當時的數據採集時間為 8 分鍾。 1983 年,西門子在德國漢諾威醫學院成功安裝了第一台臨床磁共振成像設備。藉助這台油 冷式、場強 0.2 特斯拉的磁共振設備,HeinzHundeshagen 教授和他的同事為 800 多位患者進行了成像診斷。當時,完成一次檢查需要一個半小時。同年,首台超導磁體在美國聖路易斯的Mallinckrodt 學院成功安裝。
超導磁體技術的問世,在加快圖像生成速度、簡化安裝的同時,極大地提高了圖像質量。然 而,第一台超導磁體重達 8 噸、長達 2.55 米。交付時,隨同磁體還有 12 個裝滿了電子器件的機櫃,用於對系統進行控制和將採集的數據重建為圖像。今天,場強 1.5 特斯拉的西門子 MagnetomSonata 或者 MagnetomSymphony 磁共振系統只有 3 個計算機櫃,佔地面積僅 為 30 平米。
1993 年 MagnetomOpen 產品的問世,標志著西門子成為全球第一個能夠生產開放式磁共振成像系統的製造商,使患有幽閉症的患者同樣可以受益於磁共振技術。1999 年,西門子推出可自動進床的 MagnetomHarmony 和 Symphony 系統,為磁共振技術帶來新的突破。從此,對大型人體器官/部位(例如脊椎)進行全面檢查時再也無需對病人進行重新定位。
今天,在功能性磁共振成像(fMRI)技術的幫助下,BOLD(血氧依賴水平)效應可用於獲取人腦不同區域的組織結構和功能信息,這使神經科醫生、心理醫生和神經外科醫生可深入了解腦部功能甚至代謝過程。另外,由於磁共振圖像能夠顯示人腦的健康組織在多大程度上取代了退化腦組織的功能,因此使中風患者獲得新的康復療法。針對超高場強磁共振應用,西門子推出了兩款場強 3 特斯拉的掃描設備——可對病人進行從頭到腳全身檢查的 MagnetomTrio 系統和專用於人腦檢查的 MagnetomAllegra 系統。這進一步增強了磁共振成像技術的優勢,尤其是在外科手術成像領域。舉例來說,在手術過程中,磁共振成像能夠對腦部腫瘤進行精確描繪。這樣,在手術過程中醫生就能將腫瘤完全切除。在心臟病診療應用中,磁共振成像技術開辟了新的途徑——利用所謂的自動門控心血管磁共振(CMR)技術,從圖像數據中提取周期性信號以取代心電圖信號使圖像數據與心臟運動實現同步,此時同樣無需在病人身體上布設電纜和電極。
磁共振成像技術的持續發展開辟了新的應用領域。例如,人體腸內虛擬內窺鏡甚至能夠對很小的息肉進行檢測。及時除去這些息肉能夠大大降低腸癌發生的幾率。磁共振成像的另一個應用領域就是特殊腫瘤的診斷,例如:用於早期胸部腫瘤 X 射線透視的磁共振導向活組織檢查和用於前列腺病變檢查的腫瘤分期觀察。

㈡ 磁共振是怎麼發明的(誰發明的)

磁共振是在固體微觀量子理論和無線電微波電子學技術發展的基礎上被發現的,德國西門子公司是第一台醫用磁共振機的發明者。

1945年首先在順磁性Mn鹽的水溶液中觀測到順磁共振,第二年,又分別用吸收和感應的方法發現了石蠟和水中質子的核磁共振,用波導諧振腔方法發現了Fe、Co和Ni薄片的鐵磁共振。

1950年在室溫附近觀測到固體Cr2O3的反鐵磁共振,1953年在半導體硅和鍺中觀測到電子和空穴的迴旋共振,1953年和1955年先後從理論上預言和實驗上觀測到亞鐵磁共振,隨後又發現了磁有序系統中高次模式的靜磁型共振(1957)和自旋波共振(1958)。

1956年開始研究兩種磁共振耦合的磁雙共振現象,這些磁共振被發現後,便在物理、化學、生物等基礎學科和微波技術、量子電子學等新技術中得到了廣泛的應用。

例如順磁固體量子放大器,各種鐵氧體微波器件,核磁共振譜分析技術和核磁共振成像技術及利用磁共振方法對順磁晶體的晶場和能級結構、半導體的能帶結構和生物分子結構等的研究。

原子核和基本粒子的自旋、磁矩參數的測定也是以各種磁共振原理為基礎發展起來的。

磁共振成像技術由於其無輻射、解析度高等優點被廣泛的應用於臨床醫學與醫學研究,一些先進的設備製造商與研究人員一起,不斷優化磁共振掃描儀的性能、開發新的組件。

(2)磁共振儀器什麼時候造出來擴展閱讀:

磁共振技術與一般的物理化學方法不同, 它能在不破壞樣品的條件下,利用構成分子的原子核本身的磁矩特徵,精確快速地給被測樣品定性、定量、定結構。

磁共振能提供其他理化方法所不能得到的許多重要參數,基於核磁共振原理而設計的核磁共振波譜儀能夠研究物質的化學位移,以探討價電子對核的屏蔽作用來分析各種化學基團的存在。

能夠研究物質的自旋一自旋禍合,以探討各種化學基團的相互作用關系、作用力和空間構型,能夠測試物質反應的動力學、中和反應以及質子交換反應等,還可以通過對譜線的面積、寬度等的分析以燎解被測物質在各種因素的影響下,其結構的相應變化規律性。

㈢ 為什麼做核磁共振的時候會很響為什麼核磁共振儀很貴

梯度場會產生噪音,很貴是因為成本高,我們醫院新進的一台3.0的核磁共振,美國GE的,2000多萬呢,
還有片子都是從國外進口的,一張都幾十元,現在我們一個部位是585,剛降價了,幾乎都不賺什麼錢了

㈣ 核磁共振的原理是什麼

核磁共振用NMR(Nuclear Magnetic Resonance)為代號。
1.原子核的自旋
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,見表8-1。
I為零的原子核可以看作是一種非自旋的球體,I為1/2的原子核可以看作是一種電荷分布均勻的自旋球體,1H,13C,15N,19F,31P的I均為1/2,它們的原子核皆為電荷分布均勻的自旋球體。I大於1/2的原子核可以看作是一種電荷分布不均勻的自旋橢圓體。
2.核磁共振現象
原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。
式中,P是角動量,γ是磁旋比,它是自旋核的磁矩和角動量之間的比值,
當自旋核處於磁場強度為H0的外磁場中時,除自旋外,還會繞H0運動,這種運動情況與陀螺的運動情況十分相象,稱為進動,見圖8-1。自旋核進動的角速度ω0與外磁場強度H0成正比,比例常數即為磁旋比γ。式中v0是進動頻率。
微觀磁矩在外磁場中的取向是量子化的,自旋量子數為I的原子核在外磁場作用下只可能有2I+1個取向,每一個取向都可以用一個自旋磁量子數m來表示,m與I之間的關系是:
m=I,I-1,I-2…-I
原子核的每一種取向都代表了核在該磁場中的一種能量狀態,其能量可以從下式求出:
正向排列的核能量較低,逆向排列的核能量較高。它們之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處於外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等於自旋核兩種不同取向的能量差時,處於低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。
目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有較大的發展。1H的核磁共振稱為質磁共振(Proton Magnetic Resonance),簡稱PMR,也表示為1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)簡稱CMR,也表示為13C-NMR。
3.1H的核磁共振 飽和與弛豫
1H的自旋量子數是I=1/2,所以自旋磁量子數m=±1/2,即氫原子核在外磁場中應有兩種取向。見圖8-2。1H的兩種取向代表了兩種不同的能級,
因此1H發生核磁共振的條件是必須使電磁波的輻射頻率等於1H的進動頻率,即符合下式。
核吸收的輻射能大?
式(8-6)說明,要使v射=v0,可以採用兩種方法。一種是固定磁場強度H0,逐漸改變電磁波的輻射頻率v射,進行掃描,當v射與H0匹配時,發生核磁共振。另一種方法是固定輻射波的輻射頻率v射,然後從低場到高場,逐漸改變磁場強度H0,當H0與v射匹配時,也會發生核磁共振。這種方法稱為掃場。一般儀器都採用掃場的方法。
在外磁場的作用下,1H傾向於與外磁場取順向的排列,所以處於低能態的核數目比處於高能態的核數目多,但由於兩個能級之間能差很小,前者比後者只佔微弱的優勢。1H-NMR的訊號正是依靠這些微弱過剩的低能態核吸收射頻電磁波的輻射能躍遷到高能級而產生的。如高能態核無法返回到低能態,那末隨著躍遷的不斷進行,這種微弱的優勢將進一步減弱直至消失,此時處於低能態的1H核數目與處於高能態1H核數目相等,與此同步,PMR的訊號也會逐漸減弱直至最後消失。上述這種現象稱為飽和。
1H核可以通過非輻射的方式從高能態轉變為低能態,這種過程稱為弛豫,因此,在正常測試情況下不會出現飽和現象。弛豫的方式有兩種,處於高能態的核通過交替磁場將能量轉移給周圍的分子,即體系往環境釋放能量,本身返回低能態,這個過程稱為自旋晶格弛豫。其速率用1/T2表示,T2稱為自旋晶格弛豫時間。自旋晶格弛豫降低了磁性核的總體能量,又稱為縱向弛豫。兩個處在一定距離內,進動頻率相同、進動取向不同的核互相作用,交換能量,改變進動方向的過程稱為自旋-自旋弛豫。其速率用1/T2表示,T2稱為自旋-自旋弛豫時間。自旋-自旋弛豫未降低磁性核的總體能量,又稱為橫向弛豫。

㈤ 核磁共振儀 的工作原理是什麼 工作過程是怎樣的

核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況、核磁共振用NMR(Nuclear Magnetic Resonance)為代號。 I為零的原子核可以看作是一種非自旋的球體,I為1/2的原子核可以看作是一種電荷分布均勻的自旋球體,1H,13C,15N,19F,31P的I均為1/2,它們的原子核皆為電荷分布均勻的自旋球體。I大於1/2的原子核可以看作是一種電荷分布不均勻的自旋橢圓體。 編輯本段核磁共振現象 原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。 公式中,P是角動量,γ是磁旋比,它是自旋核的磁矩和角動量之間的比值, 當自旋核處於磁場強度為H0的外磁場中時,除自旋外,還會繞H0運動,這種運動情況與陀螺的運動情況十分相象,稱為進動,見圖8-1。自旋核進動的角速度ω0與外磁場強度H0成正比,比例常數即為磁旋比γ。式中v0是進動頻率。 微觀磁矩在外磁場中的取向是量子化的,自旋量子數為I的原子核在外磁場作用下只可能有2I+1個取向,每一個取向都可以用一個自旋磁量子數m來表示,m與I之間的關系是: m=I,I-1,I-2…-I 原子核的每一種取向都代表了核在該磁場中的一種能量狀態,其能量可以從下式求出: 正向排列的核能量較低,逆向排列的核能量較高。它們之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處於外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等於自旋核兩種不同取向的能量差時,處於低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。 目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有較大的發展。1H的核磁共振稱為質磁共振(Proton Magnetic Resonance),簡稱PMR,也表示為1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)簡稱CMR,也表示為13C-NMR。 編輯本段1H的核磁共振 1H的自旋量子數是I=1/2,所以自旋磁量子數m=±1/2,即氫原子核在外磁場中應有兩種取向。見圖8-2。1H的兩種取向代表了兩種不同的能級, 因此1H發生核磁共振的條件是必須使電磁波的輻射頻率等於1H的進動頻率,即符合下式。 核吸收的輻射能大? 式(8-6)說明,要使v射=v0,可以採用兩種方法。一種是固定磁場強度H0,逐漸改變電磁波的輻射頻率v射,進行掃描,當v射與H0匹配時,發生核磁共振。另一種方法是固定輻射波的輻射頻率v射,然後從低場到高場,逐漸改變磁場強度H0,當H0與v射匹配時,也會發生核磁共振。這種方法稱為掃場。一般儀器都採用掃場的方法。 在外磁場的作用下,1H傾向於與外磁場取順向的排列,所以處於低能態的核數目比處於高能態的核數目多,但由於兩個能級之間能差很小,前者比後者只佔微弱的優勢。1H-NMR的訊號正是依靠這些微弱過剩的低能態核吸收射頻電磁波的輻射能躍遷到高能級而產生的。如高能態核無法返回到低能態,那末隨著躍遷的不斷進行,這種微弱的優勢將進一步減弱直至消失,此時處於低能態的1H核數目與處於高能態1H核數目相等,與此同步,PMR的訊號也會逐漸減弱直至最後消失。上述這種現象稱為飽和。 1H核可以通過非輻射的方式從高能態轉變為低能態,這種過程稱為弛豫,因此,在正常測試情況下不會出現飽和現象。弛豫的方式有兩種,處於高能態的核通過交替磁場將能量轉移給周圍的分子,即體系往環境釋放能量,本身返回低能態,這個過程稱為自旋晶格弛豫。其速率用1/T1表示,T1稱為自旋晶格弛豫時間。自旋晶格弛豫降低了磁性核的總體能量,又稱為縱向弛豫。兩個處在一定距離內,進動頻率相同、進動取向不同的核互相作用,交換能量,改變進動方向的過程稱為自旋-自旋弛豫。其速率用1/T2表示,T2稱為自旋-自旋弛豫時間。自旋-自旋弛豫未降低磁性核的總體能量,又稱為橫向弛豫。 編輯本段13C的核磁共振 天然豐富的12C的I為零,沒有核磁共振信號。13C的I為1/2,有核磁共振信號。通常說的碳譜就是13C核磁共振譜。由於13C與1H的自旋量子數相同,所以13C的核磁共振原理與1H相同。 將數目相等的碳原子和氫原子放在外磁場強度、溫度都相同的同一核磁共振儀中測定,碳的核磁共振信號只有氫的1/6000,這說明不同原子核在同一磁場中被檢出的靈敏度差別很大。13C的天然豐度只有12C的1.108%。由於被檢靈敏度小,豐度又低,因此檢測13C比檢測1H在技術上有更多的困難。表8-2是幾個自旋量子數為1/2的原子核的天然豐度。 編輯本段核磁共振儀 目前使用的核磁共振儀有連續波(CN)及脈沖傅里葉(PFT)變換兩種形式。連續波核磁共振儀主要由磁鐵、射頻發射器、檢測器和放大器、記錄儀等組成(見圖8-5)。磁鐵用來產生磁場,主要有三種:永久磁鐵,磁場強度14000G,頻率60MHz;電磁鐵,磁場強度23500G,頻率100MHz;超導磁鐵,頻率可達200MHz以上,最高可達500~600MHz。頻率大的儀器,解析度好、靈敏度高、圖譜簡單易於分析。磁鐵上備有掃描線圈,用它來保證磁鐵產生的磁場均勻,並能在一個較窄的范圍內連續精確變化。射頻發射器用來產生固定頻率的電磁輻射波。檢測器和放大器用來檢測和放大共振信號。記錄儀將共振信號繪製成共振圖譜。 70年代中期出現了脈沖傅里葉核磁共振儀,它的出現使13C核磁共振的研究得以迅速開展。 編輯本段氫 譜 氫的核磁共振譜提供了三類極其有用的信息:化學位移、偶合常數、積分曲線。應用這些信息,可以推測質子在碳胳上的位置。關於具體過程,就不太清楚了,謝謝

㈥ 磁共振成像技術的發明人是美國的 ( )和英國 的( )

磁共振成像技術的發明人是美國的保羅·勞特布爾和英國的彼得·曼斯菲爾德。

1985年至今,保羅·勞特布爾擔任美國伊利諾伊大學生物醫學核磁共振實驗室主任。因在核磁共振成像技術領域的突破性成就,和英國科學家彼得·曼斯菲爾德共同獲得2003年度諾貝爾生理學或醫學獎。

1964年到英國諾丁漢大學物理系擔任講師,彼得·曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場的理論,為核磁共振成像技術從理論到應用奠定了基礎。

(6)磁共振儀器什麼時候造出來擴展閱讀

磁共振成像原理:

原子核自旋,有角動量。由於核帶電荷,它們的自旋就產生磁矩。當原子核置於靜磁場中,本來是隨機取向的雙極磁體受磁場力的作用,與磁場作同一取向。

以質子即氫的主要同位素為例,它只能有兩種基本狀態:取向「平行」和「反向平行」,他們分別對應於低能和高能狀態。精確分析證明,自旋並不完全與磁場趨向一致,而是傾斜一個角度θ。這樣,雙極磁體開始環繞磁場進動。

它們之間的關系滿足拉莫爾關系:ω0=γB0,即進動角頻率ω0是磁場強度B0與磁旋比γ的積。γ是每種核素的一個基本物理常數。氫的主要同位素,質子,在人體中豐度大,而且它的磁矩便於檢測,因此最適合從它得到核磁共振圖像。

㈦ 核磁共振掃描儀為什麼能發現早期病灶

目前醫學界已經發展起來一種觀察人體內部器官的新型裝置,它叫核磁共振掃描儀。這種裝置使用強磁場,可以得到人體內骨骼、血管和其它器官的圖像,而且圖像的清晰度要比X射線成像掃描儀好。核磁共振掃描儀的主體是一個大環形磁鐵,病人躺在病床上被推進環形磁鐵的大洞里,磁鐵的強磁場包圍著病人。這時人體中化合物的原子核在強磁場的作用下,就像一個個小型磁鐵,會順著磁力線的方向排列起來;當作用磁場去掉以後,不同物質的原子核就會以不同的弛豫時間回到原來的狀態並釋放能量。小型計算機把這些不同的弛豫時間和原子核釋放的能量測量出來,並把這些訊號綜合成一幅圖像,在電視屏幕上顯示出來。因為疾病改變了人體中化合物的成分,因而也改變了化合物在磁場里吸收能量的常規形式。所以,這種方法能夠觀察到X射線不能觀察到的人體內正在發展中的病灶。核磁共振法可以找到引起心臟病的心血管病變部位,X射線法雖說也能做到,但必須在發生了血管阻塞或心臟肌肉有了毛病以後,這對於預防心血管病來說已經太晚了。核磁共振法也可以用來診斷腫瘤是否是癌症型的,即使癌症還沒有改變人體組織的大小和形狀時,它也能診斷出來,這是X射線成像掃描儀無法做到的,而且核磁共振法不需要像X射線法那樣讓病人服用造影劑。

㈧ 化學領域中的核磁共振分析儀是什麼時候出現的

最早的核磁共振成像實驗是由 1973 年勞特伯發表的,並立刻引起了廣泛重 視,短短 10 年間就進入了臨床應用階段。

㈨ 核磁共振儀 的工作原理是什麼工作過程是怎樣的

在磁場下,某些物質(如氫、碳)在高頻電場下,產生磁共振現象,使交流電場發回生偏轉,比如答:在Y方向加磁場,在X方向加交流電場,一般在Z方向接收不到信號,當發生共振時,Z方向將接收到信號,一般可做含水量分析(氫)
核磁共振成像技術,利用磁場梯度,對人體進行掃描,得到人體氫或碳等的分布圖像,經計算機計算後得到斷層圖像,多用在醫學。

㈩ 核磁共振儀有啥用 誰發明的

核磁共振儀的發明核磁共振儀廣泛用於有機物質的研究,化學反應動力學,高分子化學以及醫學,葯學和生物學等領域。20年來,由於這一技術的飛速發展,它已經成為化學領域最重要的分析技術之一。早在1924年,奧地利物理學家泡里就提出了某些核可能有自旋和磁矩。"自旋"一詞起源於帶電粒子,如質子、電子繞自身軸線旋轉的經典圖像。這種運動必然產生角動量和磁偶極矩,因為旋轉的電荷相當於一個電流線圈,由經典電磁理論可知它們要產生磁場。當然這樣的解釋只是比較形象的比擬,實際情況要比這復雜得多。原子核自旋的情況可用自旋量子數I表示。自旋量子獲得,質量數的原子序數之間有以下關系:質量數原子序數自旋量子數(I)奇數奇數或偶數1/2,3/2,5/2……偶數偶數0偶數奇數1,2,3……1>0的原子核在自旋時會產生磁場;I為1/2的核,其電荷分布是球狀;而I≥1的核,其電荷分布不是球狀,因此有磁極矩。I為0的原子核置於強大的磁場中,在強磁場的作用下,就會發生能級分裂,如果用一個與其能級相適應的頻率的電磁輻射時,就會發生共振吸收,核磁共振的名稱就是來源於此。斯特恩和蓋拉赫1924年在原子束實驗中觀察到了鋰原子和銀原子的磁偏轉,並測量了未成對電子引起的原子磁矩。1933年斯特恩等人測量了質子的磁矩。1939年比拉第一次進行了核磁共振的實驗。1946年美國的普西爾和布少赫同時提出質子核磁共振的實驗報告,他們首先用核磁共振的方法研究了固體物質、原子核的性質、原子核之間及核周圍環境能量交換等問題。為此他們兩位獲得了1952年諾貝爾物理獎。50年代核磁共振方法開始應用於化學領域,1950年斯坦福大學的兩位物理學家普羅克特和虞以NH4NO3水溶液作為氮原子核源,在測定14N的磁矩時,發現兩個性質截然不同的共振信號,從而發現了同一種原子核可隨其化學環境的不同吸收能量的共振條件也不同,即核磁共振頻率不同。這種現象稱為"化學位移"。這是由於原子核外電子形成的磁場與外加磁場相互作用的結果。化學位移是鑒別官能團的重要依據。因為化學位移的大小與鍵的性質和鍵合的元素種類等有密切的關系。此外,各組原子核之間的磁相互作用構成自旋──自旋耦合。這種作用常常使得化學位移不同的各組原子核在共振吸收圖上顯示的不是單峰而是多重峰,這種情況是由分子中鄰近原子核的數目,距離用對稱性等因素決定,因此它有助於提示整個分子的。由於上述成果高分辨核磁共振儀得以問世。開始測量的核主要是氫核,這是由於它的核磁共振信號較強。隨著儀器性能的提高,13C,31P,15N等的核也能測量,儀器使用的磁場也越來越強。50年代製造出IT(特拉斯)磁場,60年代製造出2T的磁場,並利用起導現象製造出5T的起導磁體。70年代造出8T磁場。現在核磁共振儀已經被應用到從小分子到蛋白質和核酸的各種各樣化學系統中。

熱點內容
線切割怎麼導圖 發布:2021-03-15 14:26:06 瀏覽:709
1台皮秒機器多少錢 發布:2021-03-15 14:25:49 瀏覽:623
焊接法蘭如何根據口徑配螺栓 發布:2021-03-15 14:24:39 瀏覽:883
印章雕刻機小型多少錢 發布:2021-03-15 14:22:33 瀏覽:395
切割機三五零木工貝片多少錢 發布:2021-03-15 14:22:30 瀏覽:432
加工盜磚片什麼櫸好 發布:2021-03-15 14:16:57 瀏覽:320
北洋機器局製造的銀元什麼樣 發布:2021-03-15 14:16:52 瀏覽:662
未來小七機器人怎麼更新 發布:2021-03-15 14:16:33 瀏覽:622
rexroth加工中心亂刀怎麼自動調整 發布:2021-03-15 14:15:05 瀏覽:450
機械鍵盤的鍵帽怎麼選 發布:2021-03-15 14:15:02 瀏覽:506