kad數控攻絲怎麼編程
1. 數控車床攻絲 編程
因為切削刀具在加工過程中會產生很高溫度,降低了刀具的使用壽命,因此實際的切削速度較低,各種刀具材料需要將高切削性能和高壽命綜合起來,高速鋼和硬質合金是最常見的。高速鋼具有非常好的強度和韌性,但是其耐高溫性能一般。鎢基硬質合金通常比高速鋼受歡迎,因為其具有更高的硬度及其在高切削溫度下仍能保持其硬度的性能。
特別指出的是,硬質合金切削刀具的切削速度至少可以比高速鋼刀具高4倍以上,並且具有更長的刀具壽命。但是,與高速鋼相比,硬質合金的斷裂韌性較低,從而限制了其在一些加工中的應用,特別是攻絲。
與大多數用於車削、銑削及鑽削刀具不同的是,攻絲固有的加工方式決定了它的切削刃和橫截面相對較弱。切削刃容易崩落或者破裂,使刀具失效,甚至在加工如同鋼這樣的相對易加工的材料,也會出現這樣的情況。
在低碳鋼加工中,長條的連續型切屑會堵塞絲錐的排屑槽,限制了硬質合金絲錐只能去加工那些比鋼容易加工的材料,如鋁和鑄鐵。
鋼和其它黑色金屬材料是螺紋連接件的最常用的材料,這也意味著硬質合金刀具如果能解決崩刃和破裂問題的話,其將會比高速鋼具有更多潛在的優勢。
剛性攻絲
內螺紋的精度決定了螺紋本身的准確性及螺紋配合的精度。
加工螺紋孔時,通常絲錐是由鑽床來驅動,或者將絲錐放到帶有浮動攻絲夾頭的機床上,使絲錐轉動,並且其進給量近似等於內螺紋螺距理論值。
在以前柔性攻絲的設備中,進給量只是一個近似值,加工後的螺紋螺距是由絲錐的螺距決定的,但在機床的進給和絲錐的螺距之間存在的那麼一點誤差是由浮動攻絲夾頭來進行調節,從而得到協調的。浮動攻絲夾頭的軸向具有一定的伸縮量,只要機床的進給和絲錐的螺距之間所累積的誤差不超過這個伸縮量,加工就可以正常進行而不會造成亂扣(或稱「爛牙」)。
另外,攻絲夾頭允許絲錐在攻絲過程中,在徑向上有一定的跳動,從而降低了螺紋加工的精確性。這些條件會導致剛性極低和攻絲載荷不均勻。
而眾所周知,硬質合金刀具的成功使用通常需要高的機床剛性和均勻的進給。數控刀具的材料發展從高速鋼到如硬質合金這樣的硬度更高的材料,加工速度可以得到提高,但以避免的是脆性也增高了。科學技術的發展還沒有使我們能夠經濟第得到能兼顧高硬度和高韌性的刀具材料,因此我們必須考慮如何保持刀具的剛性以及如何進給控制,以避免高脆性的刀具材料在加工過程中非正常地損壞。
對大多數加工方式而言,這些對於使用硬質合金刀具材料都已不是主要問題,但對攻絲來說,這卻是一個必須要考慮的問題。
現在的數控機床控制技術早已經發展到可以保持主軸旋轉和進給同步,從而就不需要浮動攻絲夾頭了。而在過去的數控機床控制中,機床達到穩定轉速時兩者的同步是可以做到的,但在起步和停止階段卻不能夠做到同步—亂扣往往就在這個時候發生了。
另外,夾持其它旋轉刀柄的刀具時,如具有精密柄部的硬質合金鑽頭和立銑刀,其技術已經發展到這樣的夾頭:可以先將其加熱膨脹,然後使之冷縮,從而能與刀具的柄部緊緊地配合在一起而傳遞足夠的扭矩。還有一種是利用液壓來夾緊刀具柄部的夾頭,它能夠傳遞的扭矩也很大。
使用熱漲和液壓夾頭的另外一個好處,是它們在夾持刀具時,相比攻絲頭來說只有非常少的徑向跳動:例如,夾頭在旋轉時的同心度可以在3µm或者更小,這些方法也可以用來夾持圓柱形柄部,並具有更高的夾持力和剛性。
具有高夾緊力的強力TGHP精密夾頭盡管沒有像熱漲和液壓的夾頭一樣的精度,但在攻絲加工中有效地應用。
這樣一些使用條件的創立,使硬質合金絲錐在加工是具備了較小徑向跳動量和更高的剛性,從而產生了以遠超過高速鋼絲錐的切削速度加工螺紋的可能性。
但由於目前的絲錐都是與柔性攻絲頭一起使用的,表述跳動量的尺寸並不需要限制在嚴格的公差范圍內。例如,螺紋直徑為0.5英寸(12.7mm)的高速鋼絲錐,其鑽柄的偏心量的工業標准可以達到20µ(0.0008英寸)。
另外,我們也沒有必要對螺紋直徑和切削錐與絲錐柄部的同軸度進行過嚴的控制。
整體硬質合金絲錐放大
新型高性能硬質合金絲錐設計
為了充分發揮硬質合金的長處,一種新的絲錐充分發揮了剛性攻絲機床和高精度刀具夾頭的優勢。
和精密鑽頭和端銑刀一樣,絲錐的柄部也是完全圓柱形的,但跟目前高速鋼絲錐不一樣的是其鑽柄直徑為通用尺寸。
例如,新的統一制螺紋UNF1/4-20硬質合金絲錐的柄部直徑為0.25英寸(6.35mm),和常用來加工UNF1/4-20的高精度硬質合金0.201英寸(5.1mm)的螺孔鑽的柄部直徑是一樣的。
為了能充分使用熱配合、液壓或精密夾頭,柄部的直徑偏差保持在德國工業標准7160的h6.
例如,一個0.5英寸(12.7mm)的柄部的直徑公差是-0.0110mm(-0.000040in.),圓度在3µm(0.00012inch.)之內。
方頭不是必須的,因為當柄部直徑在規定公差內時,這些夾頭具有足夠夾緊力以滿足攻絲需要。
進一步講,這種新絲錐的螺紋部分和切削錐對柄部的同軸度在10µm內。運用高精度的夾頭可以創造一個完全剛性的工藝系統並且降低絲錐的跳動量,符合了硬質合金絲錐成功使用的兩個條件:剛性和均勻的載荷。
與良好的剛性和對中性一起,一種最新開發的具有優異特性的硬質合金晶粒,絲錐幾何參數以及PVD塗層大大提高了攻絲速度和使用壽命!
就肯納金屬而言,兩種材質的硬質合金可以用於攻絲。其中KC7542是專門為加工鋼和鑄鐵的新型絲錐設計的,其在高強度的硬質合金基體上塗敷了一種新開發的納米TiAlN塗層,這種新的絲錐保證了切削刃的強度和抗磨損能力。而KC7512則被用來加工鋁和其他有色金屬,該材質由抗磨損的硬質合金基體和兩層塗層組成,其中TiN是基體上的塗層,CrC/C(碳化鉻)是表層的塗層。在加工有色金屬時,最外層的塗層具有很小的摩擦系數,從而可以防止鱗刺以及積屑瘤。
硬質合金絲錐在剛性攻絲中的性能
在機床、攻絲夾頭和刀具設計技術的進步,合理設計的硬質合金絲錐不僅用於「短切屑」的材料如鋁和鑄鐵,現在也開始首次運用於「長切屑」材料,包括碳鋼、合金鋼和工具鋼。
在「短切屑」材料中球墨鑄鐵、可鍛鑄鐵和灰口鑄鐵。這些硬質合金絲錐可以成功的加工上述有所金屬材料在規定的速度范圍內。切削速度可以達到高性能的高速鋼塗層絲錐的4倍,從而在本質上提高了生產效率。
2. 廣數系統數控車床攻絲怎麼編程
GSK980的來一個吧程序如下;
O0001
T0303G97S200M3
G0X0.Z5.M8
G33Z-30.F1.5M5這里的M05一定要這么用,不然在單段時,是要撞版機的.
G0Z10.M9
M5
Z100.
M30
10工作經驗,希望採納權!
3. 加工中心怎樣編程攻絲
用G84+M29鋼性攻絲
簡單給你編一個FANUC系統的:M16螺紋(牙距內2mm)
G0G90G54X0Y0
S300M3
G43H1Z50.M8
M29S300
G98G84R3.Z-15.F600 (F=轉速容X牙距)
G0Z200.M9
G80M5
M30
4. 數控攻絲的程序怎樣編啊
CNC機床攻絲工藝與編程的要點
1.攻螺紋動作過程
攻絲是CNC銑床和CNC加工中心上常見的孔加工內容,首先把選定的絲錐安裝在專用攻絲刀套上,最好是具有拉伸和壓縮特徵的浮動刀套。攻絲步驟如下:
第1步: X、Y定位。
第2步:選擇主軸轉速和旋轉方向。
第3步:快速移動至R點
第4步:進給運動至指定深度。
第5步:主軸停止。
第6步:主軸反向旋轉。
第7步:進給運動返回。
第8步:主軸停止。
第9步:快速返回初始位置。
第10步:重新開始主軸正常旋轉。
2.攻絲循環G84、 G74格式
⑴ 指令格式:
攻左旋螺紋:G74 X~Y~Z~R~P~F~;
攻右旋螺紋:G84 X~Y~Z~R~P~F~;
⑵ 孔加工動作:
如圖6-5-5所示,G 74循環用於加工左旋螺紋,執行該循環時,主軸反轉,在XY平面快速定位後快速移動到R點,執行攻螺紋到達孔底後,主軸正轉退回到R點,主軸恢復反轉,完成攻螺紋動作。
G84動作與G74基本類似,只是G84用於加工右旋螺紋。執行該循環時,主軸正轉,在G17平面快速定位後快速移動到R點,執行攻螺紋到達孔底後,主軸反轉退回到R點,主軸恢復正轉,完成攻螺紋動作。
攻螺紋時進給率根據不同的進給模式指定。當採用G94模式時,進給速度=導程×轉速。當採用G95模式時,進給量 =導程。在G74與G84攻螺紋期間,進給倍率、進給保持均被忽略。
⑶ 攻內螺紋程序例
試用攻螺紋循環編寫如圖6-5-6中兩螺紋孔的加工程序。
O6500;
??
N050 G95 G90 G00 X0 Y0;
(加工右旋螺紋M12)
M03 S100
G99 G84 X-25.0 Y0 Z-24 R10.0 F1.75;
???
(換左旋螺紋絲錐,加工左旋螺紋M12LH)
M04 S100;
G98 G74 X25.0 Y0 Z-24.0 R10.0 F1.75;
G80 G94 G91 G28 Z0; 3.攻絲工藝數據的確定
5. 數控車床用絲攻攻絲怎樣編程
看你是什麼系統了,例如發那科系統是 G84 Z*** P*** F***
Z表示攻絲的深度。P 表示主軸正轉換反轉的延時,數值為不帶小數點,如延時1秒用P1000表示,F為螺紋的螺距
6. 數控車攻絲怎麼編程
攻正絲是:
G97 S(100) M3;(轉速自己定)
G0 Z10.;
X0;
G84 Z-** F(螺距);
開始攻絲,到了Z-** 機器自己反轉 刀具退出 會退到Z-**
G0 X280.;
X退刀
M30;
如果是回反絲,開始的M3改為答M4.
7. 數控車床用絲攻攻牙,怎麼編程序
在攻絲循環G84或反攻絲循環G74的前一程序段指令M29Sx x x x;則機床進入剛性攻絲模態。NC執行到該指令時,主軸停止,然後主軸正轉指示燈亮,表示進入剛性攻絲模態,其後的G74或G84循環被稱為剛性攻絲循環,由於剛性攻絲循環中,主軸轉速和Z軸的進給嚴格成比例同步,因此可以使用剛性夾持的絲錐進行螺紋孔的加工,並且還可以提高螺紋孔的加工速度,提高加工效率。
G84 Z-(深度)R(安全高度)F(牙距)。
使用剛性攻絲循環需注意以下事項:
1、 G74或G84中指令的F值與M29程序段中指令的S值的比值(F/S)即為螺紋孔的螺距值。
2、Sx x x x必須小於0617號參數指定的值,否則執行固定循環指令時出現編程報警。
3、F值必須小於切削進給的上限值4000mm/min即參數0527的規定值,否則出現編程報警。
4、在M29指令和固定循環的G指令之間不能有S指令或任何坐標運動指令。
5、不能在攻絲循環模態下指令M29。
6、不能在取消剛性攻絲模態後的第一個程序段中執行S指令。
7、不要在試運行狀態下執行剛性攻絲指令。

(7)kad數控攻絲怎麼編程擴展閱讀
特點
數控機床是數字控制機床的簡稱,是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其解碼,從而使機床動作並加工零件。
數控機床與普通機床相比,數控機床有如下特點:
1、加工精度高,具有穩定的加工質量;
2、可進行多坐標的聯動,能加工形狀復雜的零件;
3、加工零件改變時,一般只需要更改數控程序,可節省生產准備時間;
4、機床本身的精度高、剛性大,可選擇有利的加工用量,生產率高(一般為普通機床的3~5倍);
5、機床自動化程度高,可以減輕勞動強度;
6、對操作人員的素質要求較高,對維修人員的技術要求更高。
編程技巧
靈活設置參考點
1、BIEJING-FANUC Power Mate O數控車床共有二根軸,即主軸Z和刀具軸X。棒料中心為坐標系原點,各刀接近棒料時,坐標值減小,稱之為進刀;反之,坐標值增大,稱為退刀。當退到刀具開始時位置時,刀具停止,此位置稱為參考點。參考點是編程中一個非常重要的概念,每執行完一次自動循環,刀具都必須返回到這個位置,准備下一次循環。
2、因此,在執行程序前,必須調整刀具及主軸的實際位置與坐標數值保持一致。然而,參考點的實際位置並不是固定不變的,編程人員可以根據零件的直徑、所用的刀具的種類、數量調整參考點的位置,縮短刀具的空行程。從而提高效率。
化零為整法
1、在低壓電器中,存在大量的短銷軸類零件,其長徑比大約為2~3,直徑多在3mm以下。由於零件幾何尺寸較小,普通儀表車床難以裝夾,無法保證質量。如果按照常規方法編程,在每一次循環中只加工一個零件,由於軸向尺寸較短,造成機床主軸滑塊在床身導軌局部頻繁往復,彈簧夾頭夾緊機構動作頻繁。
2、長時間工作之後,便會造成機床導軌局部過度磨損,影響機床的加工精度,嚴重的甚至會造成機床報廢。而彈簧夾頭夾緊機構的頻繁動作,則會導致控制電器的損壞。要解決以上問題,必須加大主軸送進長度和彈簧夾頭夾緊機構的動作間隔,同時不能降低生產率。
3、由此設想是否可以在一次加工循環中加工數個零件,則主軸送進長度為單件零件長度的數倍 ,甚至可達主軸最大運行距離,而彈簧夾頭夾緊機構的動作時間間隔相應延長為原來的數倍。更重要的是,原來單件零件的輔助時間分攤在數個零件上,每個零件的輔助時間大為縮短,從而提高了生產效率。
4、為了實現這一設想,我電腦到電腦程序設計中主程序和子程序的概念,如果將涉及零件幾何尺寸的命令欄位放在一個子程序中,而將有關機床控制的命令欄位及切斷零件的命令欄位放在主程序中,每加工一個零件時,由主程序通過調用子程序命令調用一次子程序,加工完成後,跳轉回主程序。
5、需要加工幾個零件便調用幾次子程序,十分有利於增減每次循環加工零件的數目。通過這種方式編制的加工程序也比較簡潔明了,便於修改、維護。值得注意的是,由於子程序的各項參數在每次調用中都保持不變,而主軸的坐標時刻在變化,為與主程序相適應,在子程序中必須採用相對編程語句。
8. 用數控銑床攻絲該怎樣編程怎樣操作
數控銑床可以攻絲,但是,要根據你攻絲的規格設定轉速還有進給速度,最重要的還是專材料,比如,我屬要在硬度為20度的鋼材上攻M6X0。75的絲孔,我就會轉速打到300,進給速度到225
根據轉速乘以螺距得到進給速度中間不要忽略材料
9. 數控車攻絲怎麼編程
攻正絲是:
G97 S(100) M3;(轉速自己定)
G0 Z10.;
X0;
G84 Z-** F(螺距);
開始攻絲,到了Z-** 機器自己反轉專 刀具退出屬 會退到Z-**
G0 X280.;
X退刀
M30;
如果是反絲,開始的M3改為M4.
