磁儀器是什麼原理
『壹』 核磁共振的原理是什麼
核磁共振用NMR(Nuclear Magnetic Resonance)為代號。
1.原子核的自旋
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況,見表8-1。
I為零的原子核可以看作是一種非自旋的球體,I為1/2的原子核可以看作是一種電荷分布均勻的自旋球體,1H,13C,15N,19F,31P的I均為1/2,它們的原子核皆為電荷分布均勻的自旋球體。I大於1/2的原子核可以看作是一種電荷分布不均勻的自旋橢圓體。
2.核磁共振現象
原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。
式中,P是角動量,γ是磁旋比,它是自旋核的磁矩和角動量之間的比值,
當自旋核處於磁場強度為H0的外磁場中時,除自旋外,還會繞H0運動,這種運動情況與陀螺的運動情況十分相象,稱為進動,見圖8-1。自旋核進動的角速度ω0與外磁場強度H0成正比,比例常數即為磁旋比γ。式中v0是進動頻率。
微觀磁矩在外磁場中的取向是量子化的,自旋量子數為I的原子核在外磁場作用下只可能有2I+1個取向,每一個取向都可以用一個自旋磁量子數m來表示,m與I之間的關系是:
m=I,I-1,I-2…-I
原子核的每一種取向都代表了核在該磁場中的一種能量狀態,其能量可以從下式求出:
正向排列的核能量較低,逆向排列的核能量較高。它們之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處於外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等於自旋核兩種不同取向的能量差時,處於低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。
目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有較大的發展。1H的核磁共振稱為質磁共振(Proton Magnetic Resonance),簡稱PMR,也表示為1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)簡稱CMR,也表示為13C-NMR。
3.1H的核磁共振 飽和與弛豫
1H的自旋量子數是I=1/2,所以自旋磁量子數m=±1/2,即氫原子核在外磁場中應有兩種取向。見圖8-2。1H的兩種取向代表了兩種不同的能級,
因此1H發生核磁共振的條件是必須使電磁波的輻射頻率等於1H的進動頻率,即符合下式。
核吸收的輻射能大?
式(8-6)說明,要使v射=v0,可以採用兩種方法。一種是固定磁場強度H0,逐漸改變電磁波的輻射頻率v射,進行掃描,當v射與H0匹配時,發生核磁共振。另一種方法是固定輻射波的輻射頻率v射,然後從低場到高場,逐漸改變磁場強度H0,當H0與v射匹配時,也會發生核磁共振。這種方法稱為掃場。一般儀器都採用掃場的方法。
在外磁場的作用下,1H傾向於與外磁場取順向的排列,所以處於低能態的核數目比處於高能態的核數目多,但由於兩個能級之間能差很小,前者比後者只佔微弱的優勢。1H-NMR的訊號正是依靠這些微弱過剩的低能態核吸收射頻電磁波的輻射能躍遷到高能級而產生的。如高能態核無法返回到低能態,那末隨著躍遷的不斷進行,這種微弱的優勢將進一步減弱直至消失,此時處於低能態的1H核數目與處於高能態1H核數目相等,與此同步,PMR的訊號也會逐漸減弱直至最後消失。上述這種現象稱為飽和。
1H核可以通過非輻射的方式從高能態轉變為低能態,這種過程稱為弛豫,因此,在正常測試情況下不會出現飽和現象。弛豫的方式有兩種,處於高能態的核通過交替磁場將能量轉移給周圍的分子,即體系往環境釋放能量,本身返回低能態,這個過程稱為自旋晶格弛豫。其速率用1/T2表示,T2稱為自旋晶格弛豫時間。自旋晶格弛豫降低了磁性核的總體能量,又稱為縱向弛豫。兩個處在一定距離內,進動頻率相同、進動取向不同的核互相作用,交換能量,改變進動方向的過程稱為自旋-自旋弛豫。其速率用1/T2表示,T2稱為自旋-自旋弛豫時間。自旋-自旋弛豫未降低磁性核的總體能量,又稱為橫向弛豫。
『貳』 請問磁性測厚儀的工作原理是什麼吖急求~
磁性測厚儀分為兩種,一種叫磁力測厚儀,一種叫磁感測厚儀。
磁力測厚儀是通過永久磁鐵的測頭與導磁基材之間的磁吸力大小與處於兩者之間的距離成一定比例關系可測量覆層的厚度。
磁感應原理就是利用測頭經過非鐵磁覆面而流入鐵基材的磁通大小來測定覆層的厚度,覆層俞厚,測通越小,然後經過處理換算得到塗層厚度的。
現在測量工件表面覆層的厚度基本上是用磁感測厚儀了。
希望我的回答對你有幫助
深圳成企鑫專業製造塗層檢測儀器
『叄』 核磁共振儀 的工作原理是什麼工作過程是怎樣的
在磁場下,某些物質(如氫、碳)在高頻電場下,產生磁共振現象,使交流電場發回生偏轉,比如答:在Y方向加磁場,在X方向加交流電場,一般在Z方向接收不到信號,當發生共振時,Z方向將接收到信號,一般可做含水量分析(氫)
核磁共振成像技術,利用磁場梯度,對人體進行掃描,得到人體氫或碳等的分布圖像,經計算機計算後得到斷層圖像,多用在醫學。
『肆』 磁光美容儀器的作用原理
磁光是集表皮冷卻技術、多波段強脈沖光治療技術為一體智能化、非剝脫性的皮專膚重建系統屬。磁光將上述技術智能化的組合,針對不同的皮膚類型和患者不同的皮膚問題,給出針對性的治療方案。在對表皮充分保護的前提下(表皮冷卻技術),利用磁光的技術可獨特的分解表皮和真皮內的斑點樣色素(如:顴部褐青色痣等),使能量最大限度地聚焦到真皮的膠原組織和毛囊的毛乳頭部位。應用磁光的選擇性光熱原理可以強化嫩膚、祛斑和脫毛的效果,在患者無明顯痛感和副作用的情況下輕松實現皮膚重建和脫毛.
『伍』 核磁共振儀 的工作原理是什麼 工作過程是怎樣的
核磁共振主要是由原子核的自旋運動引起的。不同的原子核,自旋運動的情況不同,它們可以用核的自旋量子數I來表示。自旋量子數與原子的質量數和原子序數之間存在一定的關系,大致分為三種情況、核磁共振用NMR(Nuclear Magnetic Resonance)為代號。 I為零的原子核可以看作是一種非自旋的球體,I為1/2的原子核可以看作是一種電荷分布均勻的自旋球體,1H,13C,15N,19F,31P的I均為1/2,它們的原子核皆為電荷分布均勻的自旋球體。I大於1/2的原子核可以看作是一種電荷分布不均勻的自旋橢圓體。 編輯本段核磁共振現象 原子核是帶正電荷的粒子,不能自旋的核沒有磁矩,能自旋的核有循環的電流,會產生磁場,形成磁矩(μ)。 公式中,P是角動量,γ是磁旋比,它是自旋核的磁矩和角動量之間的比值, 當自旋核處於磁場強度為H0的外磁場中時,除自旋外,還會繞H0運動,這種運動情況與陀螺的運動情況十分相象,稱為進動,見圖8-1。自旋核進動的角速度ω0與外磁場強度H0成正比,比例常數即為磁旋比γ。式中v0是進動頻率。 微觀磁矩在外磁場中的取向是量子化的,自旋量子數為I的原子核在外磁場作用下只可能有2I+1個取向,每一個取向都可以用一個自旋磁量子數m來表示,m與I之間的關系是: m=I,I-1,I-2…-I 原子核的每一種取向都代表了核在該磁場中的一種能量狀態,其能量可以從下式求出: 正向排列的核能量較低,逆向排列的核能量較高。它們之間的能量差為△E。一個核要從低能態躍遷到高能態,必須吸收△E的能量。讓處於外磁場中的自旋核接受一定頻率的電磁波輻射,當輻射的能量恰好等於自旋核兩種不同取向的能量差時,處於低能態的自旋核吸收電磁輻射能躍遷到高能態。這種現象稱為核磁共振,簡稱NMR。 目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有較大的發展。1H的核磁共振稱為質磁共振(Proton Magnetic Resonance),簡稱PMR,也表示為1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)簡稱CMR,也表示為13C-NMR。 編輯本段1H的核磁共振 1H的自旋量子數是I=1/2,所以自旋磁量子數m=±1/2,即氫原子核在外磁場中應有兩種取向。見圖8-2。1H的兩種取向代表了兩種不同的能級, 因此1H發生核磁共振的條件是必須使電磁波的輻射頻率等於1H的進動頻率,即符合下式。 核吸收的輻射能大? 式(8-6)說明,要使v射=v0,可以採用兩種方法。一種是固定磁場強度H0,逐漸改變電磁波的輻射頻率v射,進行掃描,當v射與H0匹配時,發生核磁共振。另一種方法是固定輻射波的輻射頻率v射,然後從低場到高場,逐漸改變磁場強度H0,當H0與v射匹配時,也會發生核磁共振。這種方法稱為掃場。一般儀器都採用掃場的方法。 在外磁場的作用下,1H傾向於與外磁場取順向的排列,所以處於低能態的核數目比處於高能態的核數目多,但由於兩個能級之間能差很小,前者比後者只佔微弱的優勢。1H-NMR的訊號正是依靠這些微弱過剩的低能態核吸收射頻電磁波的輻射能躍遷到高能級而產生的。如高能態核無法返回到低能態,那末隨著躍遷的不斷進行,這種微弱的優勢將進一步減弱直至消失,此時處於低能態的1H核數目與處於高能態1H核數目相等,與此同步,PMR的訊號也會逐漸減弱直至最後消失。上述這種現象稱為飽和。 1H核可以通過非輻射的方式從高能態轉變為低能態,這種過程稱為弛豫,因此,在正常測試情況下不會出現飽和現象。弛豫的方式有兩種,處於高能態的核通過交替磁場將能量轉移給周圍的分子,即體系往環境釋放能量,本身返回低能態,這個過程稱為自旋晶格弛豫。其速率用1/T1表示,T1稱為自旋晶格弛豫時間。自旋晶格弛豫降低了磁性核的總體能量,又稱為縱向弛豫。兩個處在一定距離內,進動頻率相同、進動取向不同的核互相作用,交換能量,改變進動方向的過程稱為自旋-自旋弛豫。其速率用1/T2表示,T2稱為自旋-自旋弛豫時間。自旋-自旋弛豫未降低磁性核的總體能量,又稱為橫向弛豫。 編輯本段13C的核磁共振 天然豐富的12C的I為零,沒有核磁共振信號。13C的I為1/2,有核磁共振信號。通常說的碳譜就是13C核磁共振譜。由於13C與1H的自旋量子數相同,所以13C的核磁共振原理與1H相同。 將數目相等的碳原子和氫原子放在外磁場強度、溫度都相同的同一核磁共振儀中測定,碳的核磁共振信號只有氫的1/6000,這說明不同原子核在同一磁場中被檢出的靈敏度差別很大。13C的天然豐度只有12C的1.108%。由於被檢靈敏度小,豐度又低,因此檢測13C比檢測1H在技術上有更多的困難。表8-2是幾個自旋量子數為1/2的原子核的天然豐度。 編輯本段核磁共振儀 目前使用的核磁共振儀有連續波(CN)及脈沖傅里葉(PFT)變換兩種形式。連續波核磁共振儀主要由磁鐵、射頻發射器、檢測器和放大器、記錄儀等組成(見圖8-5)。磁鐵用來產生磁場,主要有三種:永久磁鐵,磁場強度14000G,頻率60MHz;電磁鐵,磁場強度23500G,頻率100MHz;超導磁鐵,頻率可達200MHz以上,最高可達500~600MHz。頻率大的儀器,解析度好、靈敏度高、圖譜簡單易於分析。磁鐵上備有掃描線圈,用它來保證磁鐵產生的磁場均勻,並能在一個較窄的范圍內連續精確變化。射頻發射器用來產生固定頻率的電磁輻射波。檢測器和放大器用來檢測和放大共振信號。記錄儀將共振信號繪製成共振圖譜。 70年代中期出現了脈沖傅里葉核磁共振儀,它的出現使13C核磁共振的研究得以迅速開展。 編輯本段氫 譜 氫的核磁共振譜提供了三類極其有用的信息:化學位移、偶合常數、積分曲線。應用這些信息,可以推測質子在碳胳上的位置。關於具體過程,就不太清楚了,謝謝
『陸』 核磁共振的原理是什麼呢
核磁共振檢查是利用施加無線電磁波信號,根據人體對無線電波信號產生版不同反應,再接受權此信號,通過復雜的計算機運算,最後出現可以用於臨床診斷的一種檢查方法,對人體不會造成影響。在檢查時,核磁共振儀器發出電磁波,引起人體組織中原子、質子產生共振,引起共振後撤出電磁波,人體組織也將射出此類電磁波,而後接受電磁波成像,即為核磁共振基本原理。
『柒』 誰知道磁療產品的作用原理是什麼
磁性是物質的屬性之一。人體也具有一定的磁性,現已發現人腦 磁療、心臟、皮膚和其他器官的電流活動都產生有磁場,甚至連頭發上的毛囊也產生有磁場。近年來由於現代磁學和生物學的發展,出現了生物磁學這門邊緣科學,現已獲知磁性物質和磁場對生物學的生理機能都有一定的作用和影響,這種作用和影響叫生物的磁效應。這種磁效應應是由於物體內部微觀結構的電子運動和構成生物組織的物質磁性決定的。科學實驗已證實,磁性物質和磁場對生物的分子、細胞、神經、器官及整體(指活體)的各個層次均顯示出不同的影響。磁療就是利用人體內部的這種生物磁效應來調整和恢復人體內各種不平衡或不正常的機能狀態來達到保健的目的。
根據生物的磁效應,磁療治病機理可以概括為以下幾個方面:
1.生命過程中的氧化還原反應、神經的傳導、心肺的搏動等都與人體內部的電子傳遞有關,磁場可以影響電子的運動。
2.生物膜的滲透性有極強的選擇性,它對人體內部的腦電位及物質的交換和代謝有主要的作用。磁場能影響一些帶電離子,如鉀、鈉、氧的滲透能力。
3.人體中的各種酶和蛋白質都含有許多微量過渡金屬,如鐵、鈷、錳、銅等。這些微量元素大多是各種酶和蛋白質的組成部分,同時又是酶和蛋白質的活動中心。磁場通過對過渡金屬元素(磁性離子)的作用而改變這些酶和蛋白質的活動功能,加速酶系統的生化反應。
『捌』 磁力測量儀器的基本原理
勘探用的測量儀器早期是弦絲式、刃口式機械式磁力儀、感應式磁力儀等、第二代磁力儀,是應用核磁共振特性,利用高磁導率軟磁合金,以及復雜的電子線路組成。直到20世紀80年代提出質子旋進式磁力儀,及磁通門磁力儀等。質子磁力儀對地磁場測量的靈敏度達0.1 nT(CZM-2B型);光泵磁力儀有氦跟蹤式和銫自激式光泵磁力儀,歷經20年到20世紀90年代儀器測量靈敏度達0.003 nT(HC-90型航空磁力儀),地面磁力儀HC-95靈敏為0.01 nT。
根據需要分別有:航空磁力儀、地面磁力儀、井中磁力儀、海洋磁力儀以及實驗室的高靈敏度磁力儀。
磁力儀按其測量的地磁場參數及其量值,可分為相對測量儀器(如懸絲式垂直磁力儀等,它是測量地磁場垂直分量Z的相對差值)和絕對測量儀器(如質子磁力儀等,它是測量地磁場總強度了的絕對值,亦可測量相對值,或梯度值)。
4.4.1.1 磁通門磁力儀
坡莫合金是一種高磁導率,矯頑力很小的軟磁合金,在外磁場作用下(磁滯延線窄而陡變)很快達到飽和磁化,所以磁通門又叫飽和磁力儀。即外磁場變化很小,感應磁場強度變化很大,儀器很靈敏。把坡莫合金做成閉合磁路;外繞激勵磁線圈和訊號接收繞組輸出脈沖電壓與外磁場大小成正比。這類磁力儀類型很多,有航空、地面磁力儀和磁化率測量儀等。
4.4.1.2 質子旋進磁力儀
在能產生磁場的螺線管內的容器中充滿富含氫的液體(如水),當通電產生磁場後,使受激發的氫原子核(質子)自旋產生磁矩,並按螺線方向平行排列,出現順磁性宏觀磁矩。當垂直於地磁場的螺線管磁場停止後,氫核的宏觀磁矩繞地磁場總強度(F)方向做拉莫爾旋進,旋進頻率與地磁場(F)關系為
環境地球物理學概論
表明旋進頻率f與F成正比。儀器產生激勵磁場的線圈也是接收線圈,並調諧為旋進頻率f。因此,在一定強度的地磁場中質子旋進的磁矩將在線圈中產生感應電壓,即為地磁場強度信號。
4.4.1.3 光泵磁力儀
根據原子獲得能量後被激發,由低能級躍遷到高能級的原理。光泵磁力儀利用氦(4He)的原子燈,發射波長1.08μm的光,並製成平行光束與地磁場(被測磁場)方向一致,通過充有4He的吸收室,4He吸收1.08 μm光後形成正離子,並由低能級躍遷到高能級(稱光泵作用),這些4He原子磁矩定向平行排列,形成宏觀磁場。躍遷磁矩頻率f0與地磁場T關系為
環境地球物理學概論
由於式中f0比(4.4.1)中f高很多,有利於提高儀器靈敏度。儀器在吸收室處,垂直光線入射方向加上調制磁場,使射入磁場的頻度自動跟蹤地磁場變化,實現自動測量。
4.4.1.4 超導磁力儀
1962年約瑟夫遜提出並經實驗證實,在兩塊超導體中間夾著10~30 A的絕緣層,超導電子能無阻地通過,絕緣層兩端無電壓降,稱此絕緣層為超導隧道結(約瑟夫遜結)。這種現象叫做超導隧道結的約瑟夫遜效應。
超導磁力儀就是根據約瑟夫遜效應製成的測量儀,其測量器件是由超導材料製成的閉合環,有一個或兩個超導隧道結,結的截住面積很小,只要通過較小的電流(10-1~10-6A),接點處就達到臨界電流Ic。(超過Ic超導性被破壞,即超導隧道結所能承受的最大超導電流)。Ic對磁場很敏感,並隨外磁場的大小呈周期性起伏變化。其幅值逐漸衰減。臨界電流Ic,也是透入超導結的磁能量Φ的周期函數。它利用器件對外磁場的周期性響應,對磁能量變化(與外磁場變化成正比)進行計數,已知環的面積,就可算得磁場值。
超導磁力儀是20世紀60年代中期利用超導技術研製的一種高靈敏磁力儀。其靈敏度比其他磁力儀高幾個數量級(可達10-6nT),能測出10-3nT級的磁場。測程范圍寬,磁場頻率響應高,觀測數據穩定可靠。在地磁學中,用於研究地磁場的微擾。在磁大地電流法與電磁法中,用於測量微弱的磁場變化。在岩石物理學中,用於岩石磁學研究。
由於這種儀器的探頭需要低溫條件,常用裝於杜瓦瓶的氦進行冷卻,因此使得裝備復雜,費用較高,目前主要用於實驗室。但是,隨著超導技術研究的不斷進展,相信在不久的將來,在環境地球物理學中應用會多起來。