數控銑床加工轉速進給率怎麼算
Ⅰ 銑床的銑削速度和進給量是如何計算的
銑床的銑削速度和進給量的計算是有相應公式的。
銑削速度:V=(πxDxN)/1000(m/min)
進給量:F=fxZxN(mm/min)
f=F/(ZxN) mm/tooth
π=3.14 V切削速度(m/min) D刀具直徑(mm) N主軸轉速 F工作台進給(mm/min) f每齒進給量(mm/tooth) Z齒數
切削速度又叫線速度就是,銑刀盤在1min內,以一個點為基準,劃過了多長的距離.
例如,直徑100mm的銑刀,1min旋轉500轉.那麼這個刀具的面速度(線速度)
也就是,100x3.14x500/1000=157m/min
157就是它的線速度. 線速度值取決於刀具材質與工件材質,一般是要刀具供應商提供的數值為准。
高速切削技術在中國國內起步較晚,20世紀80年代中期開始研究陶瓷刀具高速切削淬硬鋼並在生產中應用,其後引起對高速切削加工的普遍關注,截至2012年5月,主要還是以高速鋼、硬質合金刀具為主,硬質合金刀具切削速度≤100~200m/min,高速鋼刀具在40m/min以內。
但在汽車、模具、航空和工程機械製造業進口了一大批數控機床和加工中心,中國國內也生產了一批數控機床,隨著高速切削的深入研究,這些行業有的已逐步應用高速切削加工技術,並取得很好的經濟效益。
傳統加工時,進給速度受切削速度和工藝系統剛性的限制,一般取值較小;但是在高速加工方式下,因為切削速度的提高,切削力與切削熱反而降低,這使得在加工較小殘殘留材料時,可以選用較大的進給速度。
同時,較大的進給速度還可以有效的防止因高切削速度而引起的工件表面和刀具燒傷、積屑瘤和加工硬化等問題。
比如在使用直徑為10mm的TiAlN塗層材料的球頭立銑刀加工硬度為40HRC的預硬鋼,當主軸轉速達到12000r/min時,進給速度可以高達2500mm/min。在一些刀具直徑更小,主軸轉速更高的場合,進給速度還可以取更高的數值。然而進給速度也不是越大越好,因為過高的進給速度會使工件的表面加工質量下降。
銑床是用銑刀對工件進行銑削加工的機床。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較復雜的型面,效率較刨床高,在機械製造和修理部門得到廣泛應用。
銑床是一種用途廣泛的機床,在銑床上可以加工平面(水平面、垂直面)、溝槽(鍵槽、T形槽、燕尾槽等)、分齒零件(齒輪、花鍵軸、鏈輪)、螺旋形表面(螺紋、螺旋槽)及各種曲面。此外,還可用於對回轉體表面、內孔加工及進行切斷工作等。
銑床在工作時,工件裝在工作台上或分度頭等附件上,銑刀旋轉為主運動,輔以工作台或銑頭的進給運動,工件即可獲得所需的加工表面。由於是多刃斷續切削,因而銑床的生產率較高。簡單來說,銑床可以對工件進行銑削、鑽削和鏜孔加工的機床。
Ⅱ 數控機床選擇刀具、轉速、進給率、怎樣計算
數控銑床刀具選擇如下:
在端面銑削中,所採用的刀具根據其運用范圍有回不同的形狀和種類。對於刀答具的切刃,由於切削過程的摩擦,急劇加熱,在空轉時急劇冷卻下來,要求非常嚴格,一次要求切刃具有耐沖擊性、耐磨損性和耐熱性。為了在刀具刀尖上緩和沖擊,並容易流出鐵屑,必須充分研究刀劍的形狀。選擇端面銑削刀片的前角有兩種:一種是與工件接近90°的加工面的肩削型,一種是對有刀具磨損有利的平削型。
切削速度的選擇根據已經的背吃刀量、進給量及刀具耐用度選擇切削速度,提高切削速度也是提高生產率的一種措施。也可根據生產時間經驗在機床說明書允許的切削速度范圍內查表選取或者參考有關的切削用量手冊選用。切削速度確定後,可以按n=1000Vc/πd計算出機床的主軸轉速。
進給量的選擇是機床切削用量的重要參數,根據零件的表面粗糙程度、加工精度要求、刀具及工件材料等因素,其進給量一般可用Vf=fn=fzZn。
Ⅲ 請問加工中心轉速進給應該怎麼算
數控加工中刀具選擇與切削量的確定
刀具的選擇和切削用量的確定是數控加工工藝中的重要內容,它不僅影響數控機床的加工效率,而且直接影響加工質量。CAD/CAM技術的發展,使得在數控加工中直接利用CAD的設計數據成為可能,特別是微機與數控機床的聯接,使得設計、工藝規劃及編程的整個過程全部在計算機上完成,一般不需要輸出專門的工藝文件。
現在,許多CAD/CAM軟體包都提供自動編程功能,這些軟體一般是在編程界面中提示工藝規劃的有關問題,比如,刀具選擇、加工路徑規劃、切削用量設定等,編程人員只要設置了有關的參數,就可以自動生成NC程序並傳輸至數控機床完成加工。因此,數控加工中的刀具選擇和切削用量確定是在人機交互狀態下完成的,這與普通機床加工形成鮮明的對比,同時也要求編程人員必須掌握刀具選擇和切削用量確定的基本原則,在編程時充分考慮數控加工的特點。本文對數控編程中必須面對的刀具選擇和切削用量確定問題進行了探討,給出了若干原則和建議,並對應該注意的問題進行了討論。
一、數控加工常用刀具的種類及特點
數控加工刀具必須適應數控機床高速、高效和自動化程度高的特點,一般應包括通用刀具、通用連接刀柄及少量專用刀柄。刀柄要聯接刀具並裝在機床動力頭上,因此已逐漸標准化和系列化。數控刀具的分類有多種方法。根據刀具結構可分為:①整體式;②鑲嵌式,採用焊接或機夾式連接,機夾式又可分為不轉位和可轉位兩種;③特殊型式,如復合式刀具,減震式刀具等。根據製造刀具所用的材料可分為:①高速鋼刀具;②硬質合金刀具;③金剛石刀具;④其他材料刀具,如立方氮化硼刀具,陶瓷刀具等。從切削工藝上可分為:①車削刀具,分外圓、內孔、螺紋、切割刀具等多種;②鑽削刀具,包括鑽頭、鉸刀、絲錐等;③鏜削刀具;④銑削刀具等。為了適應數控機床對刀具耐用、穩定、易調、可換等的要求,近幾年機夾式可轉位刀具得到廣泛的應用,在數量上達到整個數控刀具的30%~40%,金屬切除量占總數的80%~90%。
數控刀具與普通機床上所用的刀具相比,有許多不同的要求,主要有以下特點:
⑴剛性好(尤其是粗加工刀具),精度高,抗振及熱變形小;
⑵互換性好,便於快速換刀;
⑶壽命高,切削性能穩定、可靠;
⑷刀具的尺寸便於調整,以減少換刀調整時間;
⑸刀具應能可靠地斷屑或卷屑,以利於切屑的排除;
⑹系列化,標准化,以利於編程和刀具管理。
二、數控加工刀具的選擇
刀具的選擇是在數控編程的人機交互狀態下進行的。應根據機床的加工能力、工件材料的性能、加工工序、切削用量以及其它相關因素正確選用刀具及刀柄。刀具選擇總的原則是:安裝調整方便,剛性好,耐用度和精度高。在滿足加工要求的前提下,盡量選擇較短的刀柄,以提高刀具加工的剛性。
選取刀具時,要使刀具的尺寸與被加工工件的表面尺寸相適應。生產中,平面零件周邊輪廓的加工,常採用立銑刀;銑削平面時,應選硬質合金刀片銑刀;加工凸台、凹槽時,選高速鋼立銑刀;加工毛坯表面或粗加工孔時,可選取鑲硬質合金刀片的玉米銑刀;對一些立體型面和變斜角輪廓外形的加工,常採用球頭銑刀、環形銑刀、錐形銑刀和盤形銑刀。
在進行自由曲面加工時,由於球頭刀具的端部切削速度為零,因此,為保證加工精度,切削行距一般取得很能密,故球頭常用於曲面的精加工。而平頭刀具在表面加工質量和切削效率方面都優於球頭刀,因此,只要在保證不過切的前提下,無論是曲面的粗加工還是精加工,都應優先選擇平頭刀。另外,刀具的耐用度和精度與刀具價格關系極大,必須引起注意的是,在大多數情況下,選擇好的刀具雖然增加了刀具成本,但由此帶來的加工質量和加工效率的提高,則可以使整個加工成本大大降低。
在加工中心上,各種刀具分別裝在刀庫上,按程序規定隨時進行選刀和換刀動作。因此必須採用標准刀柄,以便使鑽、鏜、擴、銑削等工序用的標准刀具,迅速、准確地裝到機床主軸或刀庫上去。編程人員應了解機床上所用刀柄的結構尺寸、調整方法以及調整范圍,以便在編程時確定刀具的徑向和軸向尺寸。目前我國的加工中心採用TSG工具系統,其刀柄有直柄(三種規格)和錐柄(四種規格)兩種,共包括16種不同用途的刀柄。
在經濟型數控加工中,由於刀具的刃磨、測量和更換多為人工手動進行,佔用輔助時間較長,因此,必須合理安排刀具的排列順序。一般應遵循以下原則:①盡量減少刀具數量;②一把刀具裝夾後,應完成其所能進行的所有加工部位;③粗精加工的刀具應分開使用,即使是相同尺寸規格的刀具;④先銑後鑽;⑤先進行曲面精加工,後進行二維輪廓精加工;⑥在可能的情況下,應盡可能利用數控機床的自動換刀功能,以提高生產效率等。
三、數控加工切削用量的確定
合理選擇切削用量的原則是,粗加工時,一般以提高生產率為主,但也應考慮經濟性和加工成本;半精加工和精加工時,應在保證加工質量的前提下,兼顧切削效率、經濟性和加工成本。具體數值應根據機床說明書、切削用量手冊,並結合經驗而定。
⑴切削深度t。在機床、工件和刀具剛度允許的情況下,t就等於加工餘量,這是提高生產率的一個有效措施。為了保證零件的加工精度和表面粗糙度,一般應留一定的餘量進行精加工。數控機床的精加工餘量可略小於普通機床。
⑵切削寬度L。一般L與刀具直徑d成正比,與切削深度成反比。經濟型數控加工中,一般L的取值范圍為:L=(0.6~0.9)d。
⑶切削速度v。提高v也是提高生產率的一個措施,但v與刀具耐用度的關系比較密切。隨著v的增大,刀具耐用度急劇下降,故v的選擇主要取決於刀具耐用度。另外,切削速度與加工材料也有很大關系,例如用立銑刀銑削合金剛30CrNi2MoVA時,v可採用8m/min左右;而用同樣的立銑刀銑削鋁合金時,v可選200m/min以上。
⑷主軸轉速n(r/min)。主軸轉速一般根據切削速度v來選定。計算公式為:
式中,d為刀具或工件直徑(mm)。
數控機床的控制面板上一般備有主軸轉速修調(倍率)開關,可在加工過程中對主軸轉速進行整倍數調整。
⑸進給速度vF
。vF應根據零件的加工精度和表面粗糙度要求以及刀具和工件材料來選擇。vF的增加也可以提高生產效率。加工表面粗糙度要求低時,vF可選擇得大些。在加工過程中,vF也可通過機床控制面板上的修調開關進行人工調整,但是最大進給速度要受到設備剛度和進給系統性能等的限制。
隨著數控機床在生產實際中的廣泛應用,數控編程已經成為數控加工中的關鍵問題之一。在數控程序的編制過程中,要在人機交互狀態下即時選擇刀具和確定切削用量。因此,編程人員必須熟悉刀具的選擇方法和切削用量的確定原則,從而保證零件的加工質量和加工效率,充分發揮數控機床的優點,提高企業的經濟效益和生產水平。
Ⅳ 數控銑選擇刀具轉速進給率
夾具、刀具的選擇及切削用量的確定
夾具的選擇、工件裝夾方法的確定
1.夾具的選擇
數控加工對夾具主要有兩大要求:一是夾具應具有足夠的精度和剛度;二是夾具應有可靠的定位基準。選用夾具時,通常考慮以下幾點:
1)盡量選用可調整夾具、組合夾具及其它通用夾具,避免採用專用夾具,以縮短生產准備時間。
2)在成批生產時才考慮採用專用夾具,並力求結構簡單。
3)裝卸工件要迅速方便,以減少機床的停機時間。
4)夾具在機床上安裝要准確可靠,以保證工件在正確的位置上加工。
2.夾具的類型
數控車床上的夾具主要有兩類:一類用於盤類或短軸類零件,工件毛坯裝夾在帶可調卡爪的卡盤(三爪、四爪)中,由卡盤傳動旋轉;另一類用於軸類零件,毛坯裝在主軸頂尖和尾架頂尖間,工件由主軸上的撥動卡盤傳動旋轉。
數控銑床上的夾具,一般安裝在工作台上,其形式根據被加工工件的特點可多種多樣。如:通用台虎鉗、數控分度轉台等。
3.零件的安裝
數控機床上零件的安裝方法與普通機床一樣,要合理選擇定位基準和夾緊方案,注意以下兩點:
1)力求設計、工藝與編程計算的基準統一,這樣有利於編程時數值計算的簡便性和精確性。
2)盡量減少裝夾次數,盡可能在一次定位裝夾後,加工出全部待加工表面。
二、刀具的選擇及對刀點、換刀點的設置
1.刀具的選擇
與普通機床加工方法相比,數控加工對刀具提出了更高的要求,不僅需要剛性好、精度高,而且要求尺寸穩定,耐用度高,斷屑和排屑性能好;同時要求安裝調整方便,這樣來滿足數控機床高效率的要求。數控機床上所選用的刀具常採用適應高速切削的刀具材料(如高速鋼、超細粒度硬質合金)並使用可轉位刀片。(1)車削用刀具及其選擇 數控車削常用的車刀一般分尖形車刀、圓弧形車刀以及成型車刀三類。
1)尖形車刀 尖形車刀是以直線形切削刃為特徵的車刀。這類車刀的刀尖由直線形的主副切削刃構成,如90°內外圓車刀、左右端面車刀、切槽(切斷)車刀及刀尖倒棱很小的各種外圓和內孔車刀。
尖形車刀幾何參數(主要是幾何角度)的選擇方法與普通車削時基本相同,但應結合數控加工的特點(如加工路線、加工干涉等)進行全面的考慮,並應兼顧刀尖本身的強度。
2)圓弧形車刀 圓弧形車刀是以一圓度或線輪廓度誤差很小的圓弧形切削刃為特徵的車刀。該車刀圓弧刃每一點都是圓弧形車刀的刀尖,應此,刀位點不在圓弧上,而在該圓弧的圓心上。
圓弧形車刀可以用於車削內外表面,特別適合於車削各種光滑連接(凹形)的成型面。選擇車刀圓弧半徑時應考慮兩點:一是車刀切削刃的圓弧半徑應小於或等於零件凹形輪廓上的最小曲率半徑,以免發生加工干涉;二是該半徑不宜選擇太小,否則不但製造困難,還會因刀尖強度太弱或刀體散熱能力差而導致車刀損壞。
3)成型車刀 成型車刀也稱樣板車刀,其加工零件的輪廓形狀完全由車刀刀刃的形狀和尺寸決定。
數控車削加工中,常見的成型車刀有小半徑圓弧車刀、非矩形車槽刀和螺紋刀等。在數控加工中,應盡量少用或不用成型車刀。
(2)銑削用刀具及其選擇 數控加工中,銑削平面零件內外輪廓及銑削平面常用平底立銑刀,該刀具有關參數的經驗數據如下:
1)銑刀半徑RD應小於零件內輪廓面的最小曲率半徑Rmin,一般取RD=(0.8~0.9)Rmin
2)零件的加工高度H≤(1/4-1/6)RD,以保證刀具有足夠的剛度。
3)粗加工內輪廓時,銑刀最大直徑D可按下式計算(參見圖2-10):
式中
D1——輪廓的最小凹圓角半徑;
Δ——圓角鄰邊夾角等分線上的精加工餘量;
Δ1——精加工餘量;
j——圓角兩鄰邊的最小夾角。
4)用平底立銑刀銑削內槽底部時,由於槽底兩次走刀需要搭接,而刀具底刃起作用的半徑Re=R-r,如圖2-11 所示,即直徑為d=2 Re=2(R-r),編程時取刀具半徑為Re=0.95(R-r)。
對於一些立體型面和變斜角輪廓外形的加工,常用球形銑刀、環形銑刀、鼓形銑刀、錐形銑刀和盤銑刀。如圖2-12所示。
(3)標准化刀具 目前,數控機床上大多使用系列化、標准化刀具,對可轉位機夾外圓車刀、端面車刀等的刀柄和刀頭都有國家標准及系列化型號;對於加工中心及有自動換刀裝置的機床,刀具的刀柄都已有系列化和標准化的規定,如錐柄刀具系統的標准代號為TSG—JT,直柄刀具系統的標准代號為DSG—JZ。
此外,對所選擇的刀具,在使用前都需對刀具尺寸進行嚴格的測量以獲得精確數據,並由操作者將這些數據輸入數據系統,經程序調用而完成加工過程,從而加工出合格的工件。
2.對刀點、換刀點的設置
工件裝夾方式在機床確定後,通過確定工件原點來確定了工件坐標系,加工程序中的各運動軸代碼控制刀具作相對位移。例如:某程序開始第一個程序段為N0010 G90 G00 X100 Z20 ,是指刀具快速移動到工件坐標下 X=100mm Z=20mm處。究竟刀具從什麼位置開始移動到上述位置呢?所以在程序執行的一開始,必須確定刀具在工件坐標系下開始運動的位置,這一位置即為程序執行時刀具相對於工件運動的起點,所以稱程序起始點或起刀點。此起始點一般通過對刀來確定,所以,該點又稱對刀點。
在編製程序時,要正確選擇對刀點的位置。對刀點設置原則是:
1)便於數值處理和簡化程序編制。
2)易於找正並在加工過程中便於檢查。
3)引起的加工誤差小。
對刀點可以設置在加工零件上,也可以設置在夾具上或機床上,為了提高零件的加工精度,對刀點應盡量設置在零件的設計基準或工藝基準上。例:以外圓或孔定位零件,可以取外圓或孔的中心與端面的交點作為對刀點。
實際操作機床時,可通過手工對刀操作把刀具的刀位點放到對刀點上,即「刀位點」與「對刀點」的重合。所謂「刀位點」是指刀具的定位基準點,車刀的刀位點為刀尖或刀尖圓弧中心;平底立銑刀是刀具軸線與刀具底面的交點;球頭銑刀是球頭的球心,鑽頭是鑽尖等。用手動對刀操作,對刀精度較低,且效率低。而有些工廠採用光學對刀鏡、對刀儀、自動對刀裝置等,以減少對刀時間,提高對刀精度。
加工過程中需要換刀時,應規定換刀點。所謂「換刀點」是指刀架轉動換刀時的位置,換刀點應設在工件或夾具的外部,以換刀時不碰工件及其它部件為准。
三、切削用量的確定
數控編程時,編程人員必須確定每道工序的切削用量,並以指令的形式寫入程序中。切削用量包括主軸轉速、背吃刀量及進給速度等。對於不同的加工方法,需要選用不同的切削用量。切削用量的選擇原則是:保證零件加工精度和表面粗糙度,充分發揮刀具切削性能,保證合理的刀具耐用度;並充分發揮機床的性能,最大限度提高生產率,降低成本。
1.主軸轉速的確定
主軸轉速應根據允許的切削速度和工件(或刀具)直徑來選擇。其計算公式為:
n=1000v/πD
式中
v----切削速度,單位為m/min,由刀具的耐用度決定;
n-- -主軸轉速,單位為 r/min;
D----工件直徑或刀具直徑,單位為mm。
計算的主軸轉速n最後要根據機床說明書選取機床有的或較接近的轉速。
2.進給速度的確定
進給速度是數控機床切削用量中的重要參數,主要根據零件的加工精度和表面粗糙度要求以及刀具、工件的材料性質選取。最大進給速度受機床剛度和進給系統的性能限制。
確定進給速度的原則:
1)當工件的質量要求能夠得到保證時,為提高生產效率,可選擇較高的進給速度。一般在100~200mm/min范圍內選取。
2)在切斷、加工深孔或用高速鋼刀具加工時,宜選擇較低的進給速度,一般在20~50mm/min范圍內選取。
3)當加工精度,表面粗糙度要求高時,進給速度應選小些,一般在20~50mm/min范圍內選取。
4)刀具空行程時,特別是遠距離「回零」時,可以設定該機床數控系統設定的最高進給速度。
3.背吃刀量確定
背吃刀量根據機床、工件和刀具的剛度來決定,在剛度允許的條件下,應盡可能使背吃刀量等於工件的加工餘量,這樣可以減少走刀次數,提高生產效率。為了保證加工表面質量,可留少量精加工餘量,一般0.2~0.5mm。
總之,切削用量的具體數值應根據機床性能、相關的手冊並結合實際經驗用類比方法確定。同時,使主軸轉速、切削深度及進給速度三者能相互適應,以形成最佳切削用量。
Ⅳ 數控銑床機加工中 銑刀的轉速和進給量是怎麼算的 是不是有具體公式 求各位朋友指教
這個沒有具體的公式,有幾點注意的。
1.你所銑削的材質
2.你銑削的深度
3.你用多大的銑刀
4.你要求的銑削表面質量
以上幾點決定著你的轉數和進給,具體情況具體分析,不能一概而論的。
Ⅵ 銑床的銑削速度和進給量的計算方法
銑床的銑削速度和進給量的計算是有相應公式的。
銑削速度:V=(πxDxN)/1000(m/min)
進給量:F=fxZxN(mm/min)
f=F/(ZxN) mm/tooth
π=3.14 V切削速度(m/min) D刀具直徑(mm) N主軸轉速 F工作台進給(mm/min) f每齒進給量(mm/tooth) Z齒數
切削速度又叫線速度就是,銑刀盤在1min內,以一個點為基準,劃過了多長的距離.
例如,直徑100mm的銑刀,1min旋轉500轉.那麼這個刀具的面速度(線速度)
也就是,100x3.14x500/1000=157m/min
157就是它的線速度. 線速度值取決於刀具材質與工件材質,一般是要刀具供應商提供的數值為准。
(6)數控銑床加工轉速進給率怎麼算擴展閱讀:
高速切削技術在中國國內起步較晚,20世紀80年代中期開始研究陶瓷刀具高速切削淬硬鋼並在生產中應用,其後引起對高速切削加工的普遍關注,截至2012年5月,主要還是以高速鋼、硬質合金刀具為主,硬質合金刀具切削速度≤100~200m/min,高速鋼刀具在40m/min以內。
但在汽車、模具、航空和工程機械製造業進口了一大批數控機床和加工中心,中國國內也生產了一批數控機床,隨著高速切削的深入研究,這些行業有的已逐步應用高速切削加工技術,並取得很好的經濟效益。
傳統加工時,進給速度受切削速度和工藝系統剛性的限制,一般取值較小;但是在高速加工方式下,因為切削速度的提高,切削力與切削熱反而降低,這使得在加工較小殘殘留材料時,可以選用較大的進給速度。
同時,較大的進給速度還可以有效的防止因高切削速度而引起的工件表面和刀具燒傷、積屑瘤和加工硬化等問題。
比如在使用直徑為10mm的TiAlN塗層材料的球頭立銑刀加工硬度為40HRC的預硬鋼,當主軸轉速達到12000r/min時,進給速度可以高達2500mm/min。在一些刀具直徑更小,主軸轉速更高的場合,進給速度還可以取更高的數值。然而進給速度也不是越大越好,因為過高的進給速度會使工件的表面加工質量下降。
銑床是用銑刀對工件進行銑削加工的機床。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較復雜的型面,效率較刨床高,在機械製造和修理部門得到廣泛應用。
銑床是一種用途廣泛的機床,在銑床上可以加工平面(水平面、垂直面)、溝槽(鍵槽、T形槽、燕尾槽等)、分齒零件(齒輪、花鍵軸、鏈輪)、螺旋形表面(螺紋、螺旋槽)及各種曲面。此外,還可用於對回轉體表面、內孔加工及進行切斷工作等。
銑床在工作時,工件裝在工作台上或分度頭等附件上,銑刀旋轉為主運動,輔以工作台或銑頭的進給運動,工件即可獲得所需的加工表面。由於是多刃斷續切削,因而銑床的生產率較高。簡單來說,銑床可以對工件進行銑削、鑽削和鏜孔加工的機床。
Ⅶ 數控銑床選擇刀具、轉速、進給率、怎樣計算
數控銑床刀具選來擇如下:
在端面源銑削中,所採用的刀具根據其運用范圍有不同的形狀和種類。對於刀具的切刃,由於切削過程的摩擦,急劇加熱,在空轉時急劇冷卻下來,要求非常嚴格,一次要求切刃具有耐沖擊性、耐磨損性和耐熱性。為了在刀具刀尖上緩和沖擊,並容易流出鐵屑,必須充分研究刀劍的形狀。選擇端面銑削刀片的前角有兩種:一種是與工件接近90°的加工面的肩削型,一種是對有刀具磨損有利的平削型。
切削速度的選擇根據已經的背吃刀量、進給量及刀具耐用度選擇切削速度,提高切削速度也是提高生產率的一種措施。也可根據生產時間經驗在機床說明書允許的切削速度范圍內查表選取或者參考有關的切削用量手冊選用。切削速度確定後,可以按n=1000Vc/πd計算出機床的主軸轉速。
進給量的選擇是機床切削用量的重要參數,根據零件的表面粗糙程度、加工精度要求、刀具及工件材料等因素,其進給量一般可用Vf=fn=fzZn。
Ⅷ 加工中心刀的轉速和進給量怎麼算
一般的數控硬質合金刀片的線速度能達到200m(加工鋼件)左右,你可以根據線速度來計算你的轉速,轉速=線速度X1000÷3.14÷刀具直徑。F=轉速X每刃進給量X刃數。
Ⅸ 加工中心轉速和進給怎麼算
1:主軸轉速=1000Vc/πD 2:一般刀具的最高切削速度(Vc):高速鋼50 m/min;超硬工具150 m/min;塗鍍刀內具250 m/min;陶瓷·鑽石刀具1000 m/min 3加工合金鋼布氏硬度=275-325時高速容鋼刀具Vc=18m/min;硬質合金刀具Vc=70m/min(吃刀量=3mm;進給量f=0.3mm/r)主軸轉速有兩種計算方法,下面舉例說明:
主軸轉速:一種是G97 S1000表示一分鍾主軸旋轉1000圈,也就是通常所說的恆轉速。另一種是G96 S80是恆線速,是由工件表面確定的主軸轉速。進給速度也有兩種G94 F100表示一分鍾走刀距離為100毫米。另一種是G95 F0.1表示主軸每轉一圈,刀具進給尺寸為0.1毫米。
Ⅹ 加工中心轉速和進給怎麼算
1:主軸轉抄速=1000Vc/πD 2:一般刀具的最高切削速度(Vc):高速鋼50 m/min;超硬工具150 m/min;塗鍍刀具250 m/min;陶瓷·鑽石刀具1000 m/min 3加工合金鋼布氏硬度=275-325時高速鋼刀具Vc=18m/min;硬質合金刀具Vc=70m/min(吃刀量=3mm;進給量f=0.3mm/r)
主軸轉速有兩種計算方法,下面舉例說明:①主軸轉速:一種是G97 S1000表示一分鍾主軸旋轉1000圈,也就是通常所說的恆轉速。另一種是G96 S80是恆線速,是由工件表面確定的主軸轉速。
進給速度也有兩種G94 F100表示一分鍾走刀距離為100毫米。另一種是G95 F0.1表示主軸每轉一圈,刀具進給尺寸為0.1毫米。