儀器分析包括哪些重要類別
『壹』 儀器分析的重點是什麼
1、理解儀器原理
2、掌握儀器基本單元(結構)
3、儀器使用經驗
『貳』 傳統分析化學主要有哪些類別
1、化學分析,儀器分析
2、定量分析、定性分析
3、無機分析、有機分析
4、常量專分析、微量分析,痕屬量分析
5、含量分析、結構分析、狀態分析
6、無損分析、微區分析
化學分析還分為:滴定分析、重量分析
儀器分析分為:光學儀器分析、電化學儀器分析、譜學儀器分析等等。
『叄』 化工中儀器分析有哪些
化工中儀器分析有哪些
儀器分析法包括:
1)光學分析法,主要有分光光度法,原子吸收法、發射光專譜法及熒光分析屬法等
2)電化學分析法,常用的有電位法、電導法、電解法、極譜法和庫化分析法等
3)色譜分析法,常用的有氣相色譜法、液相色譜法、離子色譜法、薄層層析法和紙層分析法等
4)其它分析法,如質譜分析法、 X-射線分析法、放射化分析法和核磁共振分析法等
『肆』 儀器分析更適合用於哪些類型的分析
分為光譜法、色譜法和質譜法三種類型。
光譜法可以分為原子光譜(主要用來測定元素含專量的,屬包括原子吸收光譜、原子發射光譜、原子熒光光譜、 X射線熒光光譜,電感耦合等離子發射光譜等),分子光譜(確定或者輔助確定分子結構的,包括紫外光譜、紅外光譜,核磁共振譜等。)
色譜法大致有:氣相色譜、液相色譜、凝膠色譜、離子色譜等。
此外,電泳技術和色譜技術有一定的相似,但是一般區別對待。
色譜與電泳技術用作混合物的分離,具備一定的定性功能。
質譜用來確定分子結構。
此外 還有其他的儀器分析技術 限於個人的知識水平有限,請樓下補全
根據測量原理和信號特點,儀器分析方法可分為四類。
它們分別是:光學分析法、電化學分析、色譜法和其它儀器分析。
『伍』 儀器分析的主要方法有哪些
『陸』 儀器分析有哪些
色譜分析 光譜分析 X射線分析 熱學分析 先進塗層分析
『柒』 按照使用原理,儀器分析分為哪幾種類型
分為抄光譜法、色譜法和質譜法三種類型。
光譜法可以分為原子光譜(主要用來測定元素含量的,包括原子吸收光譜、原子發射光譜、原子熒光光譜、 X射線熒光光譜,電感耦合等離子發射光譜等),分子光譜(確定或者輔助確定分子結構的,包括紫外光譜、紅外光譜,核磁共振譜等。)
色譜法大致有:氣相色譜、液相色譜、凝膠色譜、離子色譜等。
此外,電泳技術和色譜技術有一定的相似,但是一般區別對待。
色譜與電泳技術用作混合物的分離,具備一定的定性功能。
質譜用來確定分子結構。
此外 還有其他的儀器分析技術 限於個人的知識水平有限,請樓下補全
『捌』 儀器分析的分類
儀器分析是化學學科的一個重要分支,它是以物質的物理和物理化學性質為基礎建立起來的一種分析方法。利用較特殊的儀器,對物質進行定性分析,定量分析,形態分析。儀器分析方法所包括的分析方法很多,有數十種之多。每一種分析方法所依據的原理不同,所測量的物理量不同,操作過程及應用情況也不同。儀器分析是指採用比較復雜或特殊的儀器設備,通過測量物質的某些物理或物理化學性質的參數及其變化來獲取物質的化學組成、成分含量及化學結構等信息的一類方法。儀器分析與化學分析(chemical analysis)是分析化學(analyticalchemistry)的兩個分析方法。
儀器分析的分析對象一般是半微量(0.01~0.1g)、微量(0.1~10mg)、超微量(<0.1mg)組分的分析,靈敏度高;而化學分析一般是半微量(0.01~0.1g)、常量(>0.1g)組分的分析,准確度高。
儀器分析大致可以分為:電化學分析法、核磁共振波譜法、原子發射光譜法、氣相色譜法、原子吸收光譜法、高效液相色譜法、紫外-可見光譜法、質譜分析法、紅外光譜法、其它儀器分析法等。
主要特點
1、靈敏度高:大多數儀器分析法適用於微量、痕量分析。例如,原子吸收分光光度法測定某些元素的絕對靈敏度可達10^-14g。
2、取樣量少:化學分析法需用10-1~10-4g,儀器分析試樣常在10-2~10-8g。
3、在低濃度下的分析准確度較高:含量在10-5%~10-9%范圍內的雜質測定,相對誤差低達1%~10%。
4、快速:例如,發射光譜分析法在1min內可同時測定水中48個元素。
5、可進行無損分析:有時可在不破壞試樣的情況下進行測定,適於考古、文物等特殊領域的分析。有的方法還能進行表面或微區(直徑為?級)分析,或試樣可回收。
6、能進行多信息或特殊功能的分析:有時可同時作定性、定量分析,有時可同時測定材料的組分比和原子的價態。放射性分析法還可作痕量雜質分析。
7、專一性強:例如,用單晶X衍射儀可專測晶體結構;用離子選擇性電極可測指定離子的濃度等。
8、便於遙測、遙控、自動化:可作即時、在線分析控制生產過程、環境自動監測與控制。
9、操作較簡便:省去了繁多化學操作過程。隨自動化、程序化程度的提高操作將更趨於簡化。
10、儀器設備較復雜,價格較昂貴。[1]
重要意義
儀器分析自20世紀30年代後期問世以來,不斷豐富分析化學的內涵並使分析化學發生了一系列根本性的變化。隨著科技的發展和社會的進步,分析化學將面臨更深刻、更廣泛和更激烈的變革。現代分析儀器的更新換代和儀器分析新方法、新技術的不斷創新與應用,是這些變革的重要內容。因此,儀器分析在高等院校分析化學課程中所處的地位日趨重要。許多地方高校為了使自己培養的人才能從容迎接和面對新世紀科學技術的挑戰,已將儀器分析列為化學等專業學生必修的專業基礎課。故編寫適應地方高校有關專業使用的儀器分析教材是教材改革的重要內容之一。
儀器分析就是利用能直接或間接地表徵物質的各種特性(如物理的、化學的、生理性質等)的實驗現象,通過探頭或感測器、放大器、分析轉化器等轉變成人可直接感受的已認識的關於物質成分、含量、分布或結構等信息的分析方法。也就是說,儀器分析是利用各種學科的基本原理,採用電學、光學、精密儀器製造、真空、計算機等先進技術探知物質化學特性的分析方法。因此儀器分析是體現學科交叉、科學與技術高度結合的一個綜合性極強的科技分支。 儀器分析的發展極為迅速,應用前景極為廣闊。