當前位置:首頁 » 打標機器 » 什麼什麼發動機器

什麼什麼發動機器

發布時間: 2021-02-04 00:05:52

1. 什麼車的發動機最好

如果將直列發動機看成是夾角為0度的V型發動機,那麼當兩排汽缸的夾角擴大為度時,那就是水平對置發動機了。所有的汽缸呈水平對置排列,就像是拳擊手在搏鬥,活塞就是拳擊手的拳頭(當然拳頭可以不止兩個),你來我往,毫不示弱。水平對置發動機的英文名(Boxer Engine)意義就是「拳擊手發動機」,可簡稱為B型發動機,如B6、B4,分別代表水平對置6缸和4缸發動機。
由於相鄰兩個汽缸水平對置,可以很簡單地相互抵消振動,使發動機旋轉更平穩。

水平對置發動機的重心低。由於它的氣缸為「平放」,而不是像V型或直列發動機那樣「斜放」或「立放」,因此降低了汽車的重心,同時又能讓車頭設計得又扁又低。這兩些因素都能增強汽車的行駛穩定性。

由於水平對置發動機本身就左右對稱,因此它可使變速器等放置在車身正中,讓汽車左右重量對稱,而不會像大多數汽車那樣重心偏向一側。

水平對置發動機的動力輸出軸方向與傳動軸方向一致,因此不需要改變動力傳遞方向或利用齒輪傳動,而是可以直接與離合器、變速器對接,動力傳遞效率較高,使汽車的起跑和加速更迅猛。

水平對置發動機的缺點是維修不方便,而且各缸點火間隔獨特,使其排氣聲響比較怪異,普通汽車極少裝配水平對置發動機。現在世界上只有德國保時捷和日本富士兩家車廠仍生產這種發動機。
許多人以為就像V型發動機的汽缸呈V形排列那樣,W型發動機的汽缸排列形式也一定是呈W形,其實不然,它只是近似W形排列,嚴格說來還應屬V型發動機,至少是V型發動機的一個變種。

將V型發動機的每側汽缸再進行小角度的錯開(如帕薩特W8的小角度為15度),就成了W型發動機。或者說W型發動機的汽缸排列形式是由兩個小V形組成一個大V形。

W型與V型發動機相比可以將發動機做得更短一些,曲軸也可短些,這樣就能節省發動機所佔的空間,同時重量也可輕些,但它的寬度更大,使得發動機室更滿。

W型發動機相對V型發動機最大的問題是發動機由一個整體被分割為兩個部分,在運作時必然會引起很大的振動。針對這一問題,大眾在W型發動機上設計了兩個反相轉動的平衡軸,讓兩個部分的振動在內部相互抵消。

德國大眾汽車公司現有三種W型發動機W8、W12和W16。

W8發動機

現在只有帕薩特W8使用W8型發動機,排量為4升,最大功率為270馬力/6000rpm。由於W8的長度較短,因此它可以縱置在並不太大的發動機室,為駕乘艙留出更大空間。

W12發動機

裝用大眾W12發動機的汽車有大眾的旗艦車型輝騰、本特利新車GT和奧迪旗艦車型A8L60 三款量產車。另外大眾的W12概念跑車也裝用W12發動機。大眾的W12發動機排量為6升,最大功率為420馬力/6000rpm。

W16發動機

大眾公司在200年北美車展上推出的布加迪EB16-4Veyron.概念車,裝配一種W16缸的發動機,排量為8升,沖程和缸徑均為86mm,64氣門,最大功率為1001馬力/6000rpm。

其實在1928年,布加迪就曾製造出兩款U16型發動機來,分別裝配在布加迪T45(3.8升)和T47(3升)賽車上,最大功率分別只有270馬力/5000rpm和240馬力/5000rpm。那可能是最早的16缸發動機了。

W18發動機

1998年,世界名車布加迪(Bugatti)被大眾汽車公司收購,就在當年的巴黎國際車展上,大眾推出一款裝有18個汽缸發動機的布加迪EB118。此台W18發動機由大眾開發,是世界上轎車上使用的汽缸數最多的發動機。它的排量為6.3升,最大功率555馬力。18個汽缸分成三排(而不是像上述的W型發動機那樣「兵分四路」),每排6個汽缸,就像是在V12發動機的中央又加了一台直6發動機。當時大眾公司將此種發動機稱為W型發動機,顯然它與現在大眾的W型發動機的汽缸排列方式有區別,不過筆者認為它的排列方式與W字母更近似。
還有一種知名度很高,但應用很少的發動機,這就是三角活塞旋轉式發動機。轉子發動機又稱為米勒循環發動機。它採用三角轉子旋轉運動來控制壓縮和排放,與傳統的活塞往復式發動機的直線運動迥然不同。這種發動機由德國人菲加士·汪克爾發明,在總結前人的研究成果的基礎上,解決了一些關鍵技術問題,研製成功第一台轉子發動機。一般發動機是往復運動式發動機,工作時活塞在氣缸里做往復直線運動,為了把活塞的直線運動轉化為旋轉運動,必須使用曲柄連桿機構。轉子發動機則不同,它直接將可燃氣的燃燒膨脹力轉化為驅動扭矩。與往復式發動機相比,轉子發動機取消了無用的直線運動,因而同樣功率的轉子發動機尺寸較小,重量較輕,而且振動和雜訊較低,具有較大優勢。轉子發動機的運動特點是三角轉子的中心繞輸出軸中心公轉的同時,三角轉子本身又繞其中心自轉。在三角轉子轉動時,以三角轉子中心為中心的內齒圈與以輸出軸中心為中心的齒輪嚙合,齒輪固定在缸體上不轉動,內齒圈與齒輪的齒數之比為3比2。上述運動關系使得三角轉子頂點的運動軌跡(即汽缸壁的形狀)似「8」字形。三角轉子把汽缸分成三個獨立空間,三個空間各自先後完成進氣、壓縮、做功和排氣,三角轉子自轉一周,發動機點火做功三次。由於以上運動關系,輸出軸的轉速是轉子自轉速度的3倍,這與往復運動式發動機的活塞與曲軸1:1的運動關系完全不同。

CVVT是英文Continue Variable Valve Timing的縮寫,翻譯成中文就是連續可變氣門正時機構,它是近些年來被逐漸應用於現代轎車上的眾多可變氣門正時技術中的一種。例如:寶馬公司叫做 Vanos,豐田叫做VVTI,本田叫做VTEC,但不管叫做什麼,他們的目的都是給不同的發動機工作狀況下匹配最佳的氣門重疊角(氣門正時),只不過所實現的方法是不同的。
韓國現代轎車所開發的CVVT是一種通過電子液壓控制系統改變凸輪軸打開進氣門的時間早晚,從而控制所需的氣門重疊角的技術。這項技術著重於第一個字母C (Continue連續),強調根據發動機的工作狀況連續變化,時時控制氣門重疊角的大小,從而改變氣缸進氣量。當發動機低速小負荷運轉時(怠速狀態),這時應延遲進氣門打開時間,減小氣門重疊角,以穩定燃燒狀態;當發動機低速大負荷運轉時(起步、加速、爬坡),應使進氣門打開時間提前,增大氣門重疊角,以獲得更大的扭矩;當發動機高速大負荷運轉時(高速行駛),也應延遲進氣門打開時間,減小氣門重疊角,從而提高發動機工作效率;當發動機處於中等工況時(中速勻速行駛),CVVT也會相對延遲進氣門打開時間,減小氣門重疊角,此時的目的是減少燃油消耗,降低污染排放。
CVVT系統包含以下零件:油壓控制閥、進氣凸輪齒盤、曲軸為止感應器、凸輪位置感應器、油泵、引擎電子控制單元(ECU)。
進氣凸輪齒盤包含:由時規皮帶所帶動的外齒輪、連接進氣凸輪的內齒輪與一個能在內外齒輪間移動的控制活塞。當活塞移動時在活塞上的螺旋齒輪會改變外齒輪的位置,進而改變正時的效果。而活塞的移動量由油壓控制閥所決定的,油壓控制閥是一電子控制閥其機油壓力由油泵所控制,。當電腦(ECU)接受到輸入信號時,例如引擎轉速、進氣空氣量、節氣門位置、引擎溫度等以決定油壓控制閥的操作。電腦也會利用凸輪位置感應器及曲軸位置感應器,來決定實際的進氣凸輪的氣門正時。
當發動機啟動或關閉時油壓控制閥位置受到改變,而使得進氣凸輪正時出於延後狀態。當引擎怠速或低速負荷時,正時也是處於延後的位置,比增進引擎穩定的工作狀態。當在中符合時則進氣凸輪在提前的位置,當中低速高負荷時則處於提前角位置增加扭矩輸出。而在高速符合時則處於延遲位置以利於高轉速操作。當引擎溫度較低時凸輪位置則處於延遲位置,穩定怠速降低油耗。
HONDA車系列中最為人津津樂道的應該是那套名為「VTEC」系統及後來的i-VTEC系統。
VTEC系統的全名是「Variable Valve Timing and Lift Electronic Control」,中文翻譯過來就是「可變氣門相位及升程式控制制系統」,VTEC機構最早出現在1989年,發明者叫松澤健一,車型是「型格」INTEGRA(DA6) XSi和 RSi:

本田的VTEC引擎一直是享有"可變氣門引擎的代名詞"之稱,它不只是輸出馬力超強,它還強調低轉速能有排氣標准環保又低油耗的特點,而這樣完全不同的特點在同一具引擎上面發生, 就因為它在一支凸輪軸上有2種,甚至於3種不同角度的凸輪(凸輪),中.低轉速用小角度凸輪,高轉速時,就再切換成高角度的凸輪,所以才有兩種完全不同性能表現的輸出曲線而同一顆引擎上發生,但是就因為這樣的特性,它也種下VTEC被批評成"stage"式的可變氣門引擎!本田的工程師把它VTEC分成"平時駕駛"與"戰時的激烈駕駛",所以在引擎轉速的最兩側,都有被消費者們喜歡或抱怨的兩極看法存在,這也是VTEC引擎長期在網上倍受爭議的原因之一! 而Toyota的VVTL-i發表之後,VTEC的技術已經受到嚴厲的挑戰,幾個月後,本田發表的i-VTEC於加入"可連續性"變化的正時與重疊角的設計,配合原本的VTEC機置,使i-VTEC也跟VVTL-i一樣達到"近似"完美的可變氣門引擎!

VTEC如何切換凸輪(凸輪)的機置,在此voliron已不必多說,i-VTEC多的就是在VTEC引擎上加入VTC=valve overlap control,從名字就可以看出來,它也利用到跟VANOS與VVT-i類似的方式來"連續式"地轉動凸輪軸的開與關,所以就達到了所謂的"氣門重疊角的控制",這就是進.排氣閥門的正時與開啟的重疊時間的可變是由油壓控制的VTC,使凸輪軸轉動些角度(向右,向左),進而提早或延遲去驅動到valve的開或關的時間,這跟VVT-i中的controller有一樣的功能!

就這樣的原理,i-VTEC也跟VVTL-i一樣的組合出"可連續性"變化的氣門正時與氣門重疊時間,"2-stage" 改變升程的可變氣門機構於引擎的進氣端與排氣端;而i-VTEC身上也用上S2000一樣的金屬正時鏈條,而為了進一步改善低轉速扭力,與高轉速時更有效率與直接的換氣,i-VTEC也加上可變進氣歧管為標准裝置,其中編號:K20C的引擎將在下一代的integra上使用,排氣量2.0升的它有220ps的馬力(日規),海外版也有200hp的性能輸出!而STREAM上用的K20A,雖然也是"DOHC"的iVTEC,但是它只使用"進氣端"有可變氣門裝置,也有2.0升154匹馬力的性能(BMW的320i是150hp)更難能可貴的是,這顆i-VTEC引擎,2.0升居然有14.2km/L的低油耗實力,提前符合2010年才要施行的油耗效率(fuel efficiency),而排放的廢氣標准也遠遠低過LEV的低空污標准!

2. 汽車發動機什麼型號的好

如果將直列發動機看成是夾角為0度的V型發動機,那麼當兩排汽缸的夾角擴大為180度時,那就是水平對置發動機了。所有的汽缸呈水平對置排列,就像是拳擊手在搏鬥,活塞就是拳擊手的拳頭(當然拳頭可以不止兩個),你來我往,毫不示弱。水平對置發動機的英文名(Boxer Engine)意義就是「拳擊手發動機」,可簡稱為B型發動機,如B6、B4,分別代表水平對置6缸和4缸發動機。
由於相鄰兩個汽缸水平對置,可以很簡單地相互抵消振動,使發動機旋轉更平穩。

水平對置發動機的重心低。由於它的氣缸為「平放」,而不是像V型或直列發動機那樣「斜放」或「立放」,因此降低了汽車的重心,同時又能讓車頭設計得又扁又低。這兩些因素都能增強汽車的行駛穩定性。

由於水平對置發動機本身就左右對稱,因此它可使變速器等放置在車身正中,讓汽車左右重量對稱,而不會像大多數汽車那樣重心偏向一側。

水平對置發動機的動力輸出軸方向與傳動軸方向一致,因此不需要改變動力傳遞方向或利用齒輪傳動,而是可以直接與離合器、變速器對接,動力傳遞效率較高,使汽車的起跑和加速更迅猛。

水平對置發動機的缺點是維修不方便,而且各缸點火間隔獨特,使其排氣聲響比較怪異,普通汽車極少裝配水平對置發動機。現在世界上只有德國保時捷和日本富士兩家車廠仍生產這種發動機。
許多人以為就像V型發動機的汽缸呈V形排列那樣,W型發動機的汽缸排列形式也一定是呈W形,其實不然,它只是近似W形排列,嚴格說來還應屬V型發動機,至少是V型發動機的一個變種。

將V型發動機的每側汽缸再進行小角度的錯開(如帕薩特W8的小角度為15度),就成了W型發動機。或者說W型發動機的汽缸排列形式是由兩個小V形組成一個大V形。

W型與V型發動機相比可以將發動機做得更短一些,曲軸也可短些,這樣就能節省發動機所佔的空間,同時重量也可輕些,但它的寬度更大,使得發動機室更滿。

W型發動機相對V型發動機最大的問題是發動機由一個整體被分割為兩個部分,在運作時必然會引起很大的振動。針對這一問題,大眾在W型發動機上設計了兩個反相轉動的平衡軸,讓兩個部分的振動在內部相互抵消。

德國大眾汽車公司現有三種W型發動機W8、W12和W16。

W8發動機

現在只有帕薩特W8使用W8型發動機,排量為4升,最大功率為270馬力/6000rpm。由於W8的長度較短,因此它可以縱置在並不太大的發動機室,為駕乘艙留出更大空間。

W12發動機

裝用大眾W12發動機的汽車有大眾的旗艦車型輝騰、本特利新車GT和奧迪旗艦車型A8L60 三款量產車。另外大眾的W12概念跑車也裝用W12發動機。大眾的W12發動機排量為6升,最大功率為420馬力/6000rpm。

W16發動機

大眾公司在200年北美車展上推出的布加迪EB16-4Veyron.概念車,裝配一種W16缸的發動機,排量為8升,沖程和缸徑均為86mm,64氣門,最大功率為1001馬力/6000rpm。

其實在1928年,布加迪就曾製造出兩款U16型發動機來,分別裝配在布加迪T45(3.8升)和T47(3升)賽車上,最大功率分別只有270馬力/5000rpm和240馬力/5000rpm。那可能是最早的16缸發動機了。

W18發動機

1998年,世界名車布加迪(Bugatti)被大眾汽車公司收購,就在當年的巴黎國際車展上,大眾推出一款裝有18個汽缸發動機的布加迪EB118。此台W18發動機由大眾開發,是世界上轎車上使用的汽缸數最多的發動機。它的排量為6.3升,最大功率555馬力。18個汽缸分成三排(而不是像上述的W型發動機那樣「兵分四路」),每排6個汽缸,就像是在V12發動機的中央又加了一台直6發動機。當時大眾公司將此種發動機稱為W型發動機,顯然它與現在大眾的W型發動機的汽缸排列方式有區別,不過筆者認為它的排列方式與W字母更近似。
還有一種知名度很高,但應用很少的發動機,這就是三角活塞旋轉式發動機。轉子發動機又稱為米勒循環發動機。它採用三角轉子旋轉運動來控制壓縮和排放,與傳統的活塞往復式發動機的直線運動迥然不同。這種發動機由德國人菲加士·汪克爾發明,在總結前人的研究成果的基礎上,解決了一些關鍵技術問題,研製成功第一台轉子發動機。一般發動機是往復運動式發動機,工作時活塞在氣缸里做往復直線運動,為了把活塞的直線運動轉化為旋轉運動,必須使用曲柄連桿機構。轉子發動機則不同,它直接將可燃氣的燃燒膨脹力轉化為驅動扭矩。與往復式發動機相比,轉子發動機取消了無用的直線運動,因而同樣功率的轉子發動機尺寸較小,重量較輕,而且振動和雜訊較低,具有較大優勢。轉子發動機的運動特點是三角轉子的中心繞輸出軸中心公轉的同時,三角轉子本身又繞其中心自轉。在三角轉子轉動時,以三角轉子中心為中心的內齒圈與以輸出軸中心為中心的齒輪嚙合,齒輪固定在缸體上不轉動,內齒圈與齒輪的齒數之比為3比2。上述運動關系使得三角轉子頂點的運動軌跡(即汽缸壁的形狀)似「8」字形。三角轉子把汽缸分成三個獨立空間,三個空間各自先後完成進氣、壓縮、做功和排氣,三角轉子自轉一周,發動機點火做功三次。由於以上運動關系,輸出軸的轉速是轉子自轉速度的3倍,這與往復運動式發動機的活塞與曲軸1:1的運動關系完全不同。

CVVT是英文Continue Variable Valve Timing的縮寫,翻譯成中文就是連續可變氣門正時機構,它是近些年來被逐漸應用於現代轎車上的眾多可變氣門正時技術中的一種。例如:寶馬公司叫做 Vanos,豐田叫做VVTI,本田叫做VTEC,但不管叫做什麼,他們的目的都是給不同的發動機工作狀況下匹配最佳的氣門重疊角(氣門正時),只不過所實現的方法是不同的。
韓國現代轎車所開發的CVVT是一種通過電子液壓控制系統改變凸輪軸打開進氣門的時間早晚,從而控制所需的氣門重疊角的技術。這項技術著重於第一個字母C (Continue連續),強調根據發動機的工作狀況連續變化,時時控制氣門重疊角的大小,從而改變氣缸進氣量。當發動機低速小負荷運轉時(怠速狀態),這時應延遲進氣門打開時間,減小氣門重疊角,以穩定燃燒狀態;當發動機低速大負荷運轉時(起步、加速、爬坡),應使進氣門打開時間提前,增大氣門重疊角,以獲得更大的扭矩;當發動機高速大負荷運轉時(高速行駛),也應延遲進氣門打開時間,減小氣門重疊角,從而提高發動機工作效率;當發動機處於中等工況時(中速勻速行駛),CVVT也會相對延遲進氣門打開時間,減小氣門重疊角,此時的目的是減少燃油消耗,降低污染排放。
CVVT系統包含以下零件:油壓控制閥、進氣凸輪齒盤、曲軸為止感應器、凸輪位置感應器、油泵、引擎電子控制單元(ECU)。
進氣凸輪齒盤包含:由時規皮帶所帶動的外齒輪、連接進氣凸輪的內齒輪與一個能在內外齒輪間移動的控制活塞。當活塞移動時在活塞上的螺旋齒輪會改變外齒輪的位置,進而改變正時的效果。而活塞的移動量由油壓控制閥所決定的,油壓控制閥是一電子控制閥其機油壓力由油泵所控制,。當電腦(ECU)接受到輸入信號時,例如引擎轉速、進氣空氣量、節氣門位置、引擎溫度等以決定油壓控制閥的操作。電腦也會利用凸輪位置感應器及曲軸位置感應器,來決定實際的進氣凸輪的氣門正時。
當發動機啟動或關閉時油壓控制閥位置受到改變,而使得進氣凸輪正時出於延後狀態。當引擎怠速或低速負荷時,正時也是處於延後的位置,比增進引擎穩定的工作狀態。當在中符合時則進氣凸輪在提前的位置,當中低速高負荷時則處於提前角位置增加扭矩輸出。而在高速符合時則處於延遲位置以利於高轉速操作。當引擎溫度較低時凸輪位置則處於延遲位置,穩定怠速降低油耗。
HONDA車系列中最為人津津樂道的應該是那套名為「VTEC」系統及後來的i-VTEC系統。
VTEC系統的全名是「Variable Valve Timing and Lift Electronic Control」,中文翻譯過來就是「可變氣門相位及升程式控制制系統」,VTEC機構最早出現在1989年,發明者叫松澤健一,車型是「型格」INTEGRA(DA6) XSi和 RSi:

本田的VTEC引擎一直是享有"可變氣門引擎的代名詞"之稱,它不只是輸出馬力超強,它還強調低轉速能有排氣標准環保又低油耗的特點,而這樣完全不同的特點在同一具引擎上面發生, 就因為它在一支凸輪軸上有2種,甚至於3種不同角度的凸輪(凸輪),中.低轉速用小角度凸輪,高轉速時,就再切換成高角度的凸輪,所以才有兩種完全不同性能表現的輸出曲線而同一顆引擎上發生,但是就因為這樣的特性,它也種下VTEC被批評成"stage"式的可變氣門引擎!本田的工程師把它VTEC分成"平時駕駛"與"戰時的激烈駕駛",所以在引擎轉速的最兩側,都有被消費者們喜歡或抱怨的兩極看法存在,這也是VTEC引擎長期在網上倍受爭議的原因之一! 而Toyota的VVTL-i發表之後,VTEC的技術已經受到嚴厲的挑戰,幾個月後,本田發表的i-VTEC於加入"可連續性"變化的正時與重疊角的設計,配合原本的VTEC機置,使i-VTEC也跟VVTL-i一樣達到"近似"完美的可變氣門引擎!

VTEC如何切換凸輪(凸輪)的機置,在此voliron已不必多說,i-VTEC多的就是在VTEC引擎上加入VTC=valve overlap control,從名字就可以看出來,它也利用到跟VANOS與VVT-i類似的方式來"連續式"地轉動凸輪軸的開與關,所以就達到了所謂的"氣門重疊角的控制",這就是進.排氣閥門的正時與開啟的重疊時間的可變是由油壓控制的VTC,使凸輪軸轉動些角度(向右,向左),進而提早或延遲去驅動到valve的開或關的時間,這跟VVT-i中的controller有一樣的功能!

就這樣的原理,i-VTEC也跟VVTL-i一樣的組合出"可連續性"變化的氣門正時與氣門重疊時間,"2-stage" 改變升程的可變氣門機構於引擎的進氣端與排氣端;而i-VTEC身上也用上S2000一樣的金屬正時鏈條,而為了進一步改善低轉速扭力,與高轉速時更有效率與直接的換氣,i-VTEC也加上可變進氣歧管為標准裝置,其中編號:K20C的引擎將在下一代的integra上使用,排氣量2.0升的它有220ps的馬力(日規),海外版也有200hp的性能輸出!而STREAM上用的K20A,雖然也是"DOHC"的iVTEC,但是它只使用"進氣端"有可變氣門裝置,也有2.0升154匹馬力的性能(BMW的320i是150hp)更難能可貴的是,這顆i-VTEC引擎,2.0升居然有14.2km/L的低油耗實力,提前符合2010年才要施行的油耗效率(fuel efficiency),而排放的廢氣標准也遠遠低過LEV的低空污標准!

3. 汽車的發動機制動器是什麼

發動機制動是利用發抄動機的牽阻作用減慢車速,檔位越低牽阻越明顯,制動性越強。在下長坡道路行駛,掛入低速檔利用發動機的牽阻作用可以減少制動器的負擔和減少制動次數,防止制動過熱引起制動力熱衰減;在冰雪、泥濘的路面上行駛,應用發動機牽阻制動可以防止側滑。
利用發動機制動是指抬起油門踏板,但不踏下離合器,利用發動機的壓縮行程產生的壓縮阻力,內摩擦力和進排氣阻力對驅動輪形成制動作用。也就是「拖檔走」--掛著檔不給油,發動機對車沒有牽引力。相反由於車輪轉動帶動了傳動系,怠速下的發動機對車產生反作用的阻力,檔位越高發動機對車的作用越小,反之越大。

4. 發動機分別包括什麼

汽車發動機是汽車的動力裝置,提供汽車的動力源,由兩大機構五大系統組成(曲柄連桿機構和配氣機構;燃料供給系、冷卻系、潤滑系、點火系和起動系),汽車發動機在五大系統的配合下,通過兩大機構的連接和運轉,將燃料的化學能轉化為機械動能,將往復直線運動轉化為旋轉運動,發動機是汽車的「心臟」,為汽車運行提供基本的動力保障。
下面詳細介紹一下兩大機構和五大系統的組成部分及主要功能:

A.曲柄連桿機構:連桿、曲軸、軸瓦、飛輪、活塞、活塞環、活塞銷、曲軸油封;是發動機實現工作循環,完成能量轉換的主要運動零件

B.配氣機構:汽缸蓋、氣門室蓋罩、凸輪軸、氣門、進氣歧管、排氣歧管、空氣濾、消音器、三元催化、增壓器、中冷器等;其功能是根據發動機的工作順序和工作過程,定時開啟和關閉進氣門和排氣門,使可燃混合氣或空氣進入氣缸,並使廢氣從氣缸內排出,實現換氣過程

C.冷卻系:一般由水箱、水泵、散熱器、風扇、節溫器、水溫表和放水開關組成;(汽車發動機採用兩種冷卻方式,即空氣冷卻和水冷卻,目前我國汽車主流市場的發動機多採用水冷卻。)其功用是將受熱零件吸收的部分熱量及時散發出去,保證發動機在最適宜的溫度狀態下工作。

D.潤滑系:發動機潤滑系由機油泵、集濾器、機油濾清器、油道、限壓閥、機油表、感壓塞及油尺等組成;功用是向作相對運動的零件表面輸送定量的清潔潤滑油,以實現液體摩擦,減小摩擦阻力,減輕機件的磨損。並對零件表面進行清洗和冷卻。

E.燃料系:汽油機燃料系由汽油箱、汽油表、汽油管、汽油濾清器、汽油泵、化油器、空氣濾清器、進排氣歧管等組成;功用是根據發動機的要求,配製出一定數量和濃度的混合氣,供入氣缸,並將燃燒後的廢氣從氣缸內排出到大氣中去

F.啟動系:起動機、點火開關、蓄電池;其功用是實現發動機啟動過程。

G.點火系:火花塞、高壓線、高壓線圈、分電器。其功用是能夠按時在火花塞電極間產生電火花。

5. 汽車發動機都有什麼類型的

目前的發動機主要有L(直列)發動機,型發動機,W型發動機,水平對置發動機。另外比較特殊的就是轉子發動機,這是馬自達的專利。

V型發動機:V型發動機的氣缸是兩兩左右叉開的,形成一定的夾角,從側面看上去就像「V」一樣,所以叫V型發動機。V型發動機與直列發動機相比,縮短了機體長度和高度,增加了氣缸體的剛度,減輕了發動機的重量,但加大了發動機的寬度,且形狀較復雜,加工困難,一般用於6缸及6缸以上的發動機。現在的V型發動機主要有V6,V8,V10,V12這4種。

直列發動機:它的氣缸排成一排,也就是一列,因此而得名。現在的直列發動機主要有L3,L4,L5,L6。 直列發動機的汽缸體成一字排開,缸體、缸蓋和曲軸結構簡單,製造成本低,低速扭矩特性好,燃料消耗少,尺寸緊湊,應用比較廣泛,缺點則是功率較低。

W型發動機:W型發動機嚴格說來還是屬於V型發動機的一種,只是將V型發動機兩邊的氣缸再再分成兩組,從側面看就像「W」一樣,因此得名。也可以說,W12發動機就是用兩台V6發動機拼成的,其最大的好處就是結構緊湊,易於布置,有利於發動機艙的空間的優化,缺點就是結構過於復雜。W型發動機是大眾的專利技術,只有大眾即大眾旗下的品牌才在使用W型發動機,目前主要有W12和W16。

水平對置發動機:其實也是屬於V型發動機的一種,只是其氣缸夾角為180度。水平對置發動機是一種最符合運動機械原理的汽車發動機組合形式,其製造成本和工藝難度相當高,目前世界上只有保時捷和斯巴魯在使用。 水平對置發動機的最大優點是重心低。由於它的汽缸為「平放」,不僅降低了汽車的重心,還能讓車頭設計得又扁又低,這些因素都能增強汽車的行駛穩定性。 同時,水平對置的汽缸布局是一種對稱穩定結構,這使得發動機的運轉平順性比V型發動機更好,運行時的功率損耗也是最小。
另外,由於活塞曲軸在左右運動時產生的振動互相抵消,進而實現了低噪音、低油耗。目前主要有水平對置4缸和6缸。

6. 什麼發動機,是ea888嗎

ea888是大眾EA888發動機。
EA888系列發動機包括1.8L和2.0L兩種排量:.8TSI最大功率為118kw(160PS)—5000-6200rpm,最大扭矩為250Nm—1500-4500rpm;2.0TSI最大功率可達147kw(200PS)—5100-6000rpm,最大扭矩為280Nm—1700-5000rpm。
這兩種排量的發動機的機械結構基本一致,不同的是曲軸與活塞的連桿的長度,2.0TSI比1.8TSI的連桿有所縮短,曲軸半徑加大,以增加排氣量。而兩者的活塞頂部結構也有所不同,主要是為了調節燃燒室的工作容積,從而保證一致的壓縮比,實現相同的燃燒效果。
首批國產EA888系列發動機裝備到一汽-大眾邁騰和上海大眾昊銳車型上。EA888系列發動機作為大眾目前的主力發動機之一,現已搭載到大眾旗下多種車型上,包括一汽-大眾CC、速騰、上海大眾途觀、帕薩特等。

進氣可變氣門正時
EA888發動機採用了進氣可變氣門正時技術,能有效提高進排氣效率。主要是通過位於進氣凸輪軸的葉片式液壓調節器來實現氣門正時可變。
葉片式調節器由外殼體、內部葉片轉子以及位於葉片轉子內部的鎖銷組成。外殼體與外部的正時齒輪固定,由曲軸帶動。而內部的葉片則直接與進氣門凸輪軸固定,並與之一同旋轉。
工作原理主要是通過凸輪軸調節閥控制相應管道中的液壓機油,來驅動調節器中的葉片,進而帶動凸輪軸旋轉,實現氣門開閉的提前或延遲,可調范圍達到60°的曲軸轉角。

缸內直噴系統
燃油供給系統是實現缸內直噴最為關鍵的一部分,燃油要噴入壓力非常高的氣缸內,就必須具備足夠的噴射壓力。
高壓燃油泵是燃油加壓的關鍵環節,EA888發動機的燃油泵是一個結構簡單的單柱塞泵,靠進氣凸輪軸上的四方(四點式)凸輪來驅動。四點式凸輪可使油泵供油行程和各缸相應噴油過程同步,各缸噴油均勻性和重復性比較好。
高壓燃油泵產生最大的油壓為150bar,根據發動機工況需要,通過對油壓控制閥的調節,燃油壓力可在50bar-150bar之間調節。採用6噴孔噴油器,噴嘴錐角為50°,更有利於汽油與空氣的充分混合。

水冷渦輪增壓技術
發動機的渦輪增壓器和排氣管採用了集成式的設計,這樣可以一定程度上減少多餘零件的體積和重量,使得這套系統相對穩定可靠。
渦輪增壓冷卻系統,主要由冷卻循環泵把冷卻液從輔助冷卻器中輸送至增壓空氣冷卻器和廢氣渦輪增壓器中。主要包括兩個循環通道,一個是經過渦輪增壓器,對渦輪增壓系統進行冷卻;另一個是經過進氣歧管內的冷卻器,對增壓空氣冷卻。

進氣歧管翻板
通過控制進氣歧管翻板的開閉,可以滿足發動機在不同工況下的充氣需求。如發動機在低速工況時,通過進氣歧管翻板關閉下進氣通道,可以減少氣流通過的橫截面,來增加氣流流速,結合活塞頂的特殊設計,有效形成強烈的進氣渦流,有利於混合氣的形成與霧化。
同樣地,當發動機進入高速工況採用均質混合氣模式時,進氣歧管翻板開啟下進氣通道,增大氣流通過的橫截面,以獲得更多進氣,提高發動機的輸出功率。

可變排量機油泵
傳統的機油泵工作中,隨著發動機轉速的增加,機油壓力也不斷增大,機油的壓力主要是通過機油泵內部的限壓閥限制,但是這時的機油泵仍然運行在最大輸出量,不僅消耗發動機的動力,而且輸入的能量轉化為熱能,加速了機油的老化。
EA888發動機採用可變排量機油泵,主要是通過調節泵齒輪的供油量來實現機油壓力的調節。怎樣來實現的?主要是通過機油泵內部兩個泵齒輪相對移動來實現的。兩個泵齒輪無位移(正對著),供油能力最大;兩個泵齒輪最大軸向位移(偏移),供油量最小。

雙對旋平衡軸
EA888發動機採用了雙平衡軸,位於氣缸體的下端兩側,由曲軸和鏈條驅動。利用兩根平衡軸自身的旋轉產生的離心力正好與曲軸產生的離心力方向相反,可以抵消掉大部分的振動,從而增強發動機動平衡狀態特性,降低噪音。
大眾EA888發動機同樣集合了缸內直噴、水冷渦輪增壓、可變氣門正時等先進技術,擁有更低的油耗、排放以及更強勁的動力輸出,與EA111 1.4TSI發動機相比,EA888發動機採用了雙平衡軸、氣門滾珠搖臂與發電啟動一體機等技術,使發動機運轉更為平順、噪音進一步降低。

出現的問題
雖然優勢明顯,但油分離器經常失效,導致機油蒸汽油水分離失效[2] ,另外凸輪軸端蓋與缸體間因端蓋塑料強度不足導緻密封不嚴,致機油泄漏等問題。

7. 發動機器(動作 物品)什麼課本,破壞什麼

等我翻過教科書... 1,整體斷裂2,過度殘余變形3,部分表面損傷4,正常工作條件下造成的破壞

8. 發動機器(動作 物品)什麼課本

:發動機缺少冷卻液會造成溫度過高並且繼續駕駛一段時間後會拉缸 曲軸斷裂 缸體破碎,最終導致發動機報廢無維修價值

9. 奇瑞風雲2用的是什麼發動機器

樓主這個現在旗雲2和風雲2用的機器一樣,都是ACTECO-SQR477F。

10. 什麼發動機都可以加取力器嗎

取力器一般裝在變速器上,跟發動機的關系不是很直接,只要變速器上有介面就可以。
如果一定要在發動機上取力,一定要考慮發動機負載的平衡問題,否則可能導致曲軸和曲軸瓦提前磨損,影響發動機使用壽命。

熱點內容
線切割怎麼導圖 發布:2021-03-15 14:26:06 瀏覽:709
1台皮秒機器多少錢 發布:2021-03-15 14:25:49 瀏覽:623
焊接法蘭如何根據口徑配螺栓 發布:2021-03-15 14:24:39 瀏覽:883
印章雕刻機小型多少錢 發布:2021-03-15 14:22:33 瀏覽:395
切割機三五零木工貝片多少錢 發布:2021-03-15 14:22:30 瀏覽:432
加工盜磚片什麼櫸好 發布:2021-03-15 14:16:57 瀏覽:320
北洋機器局製造的銀元什麼樣 發布:2021-03-15 14:16:52 瀏覽:662
未來小七機器人怎麼更新 發布:2021-03-15 14:16:33 瀏覽:622
rexroth加工中心亂刀怎麼自動調整 發布:2021-03-15 14:15:05 瀏覽:450
機械鍵盤的鍵帽怎麼選 發布:2021-03-15 14:15:02 瀏覽:506