焊接連接有哪些特性
① 焊接的主要特點是什麼2.什麼叫金屬焊接性如何評價金屬焊接性
焊接是通過加熱或加壓,或兩者並用,並且用或不用填充材料,使工件產生原子間結合的一種連接工藝方法。其特點有:
(1)連接性能好 焊縫具有良好的力學性能,能耐高溫、高壓、能耐低溫、具有良好的密 封性、導電性、耐蝕性和耐磨性等。
(2)省料、省工、成本低 採用焊接方法製造金屬結構,一般比鉚接節省金屬材料10%-20%。
(3)重量輕 採用焊接方法製造船舶、車輛、飛機、飛船、火箭等運載工具,可以減輕自 重,提高運載能力。
(4)簡化工藝 可以採用焊接方法製造重型、復雜的及其零部件,簡化鑄造和鍛造工藝, 以及簡化切削加工工藝。
金屬焊接性是金屬材料對焊接加工的適應能力,在一定焊接工藝的條件下,能否獲得優質的焊接接頭和焊接接頭能否在使用條件下安全運行的一種評價尺度。
金屬的焊接性是指金屬材料對焊接加工的適應性,主要指在一定的焊接工藝條件下,獲得優質焊接接頭的難易程度。從廣義來說「焊接性」這一概念還包括「可用性』和「可靠性」。焊接性取決於材料的特性和所採用的工藝條件。金屬材料的焊接性不是靜止不變的,而是發展的,例如原來認為焊接性不好的材料,隨著科學技術的發展,有了新的焊接方法而變為易於焊接,即焊接性變好了。因此我們不能離開工藝條件來泛談焊接性問題。
焊接性包括兩方面的內容:一是接合性能,即在一定的焊接工藝條件下,形成焊接缺陷的敏感性;二是實用性能,即在一定焊接工藝條件下,焊接接頭對使用要求的適應性。
工藝焊接性是指在一定焊接工藝條件下,能否獲得優質、緻密、無缺陷焊接接頭的能力。
分析研究金屬的工藝焊接性時,必然要涉及到焊接過程。對於熔化焊來講,焊接過程一般都要經歷傳熱的冶金反應。因此,把工藝焊接性又分為熱焊接性和冶金焊接性。
(1)熱焊接性:熱焊接性是指在焊接熱過程中,對焊接熱影響區組織性能產生缺陷的影響程度。用它來評定被焊金屬對熱的敏感性(晶粒長大和組織性能變化等),熱焊接性主要與被焊材質及焊接工藝條件有關。
(2)冶金焊接性:冶金焊接性是指冶金反應對焊接性能和產生缺陷的影響程度。它包括合金元素的氧化、還原、蒸發。氫、氧、氮的溶解,對氣孔、夾雜物、裂紋等缺陷的敏感性,它們是影響焊縫金屬化學成分和性能的重要方面。
② 什麼是焊接特性
焊接特性包括母材的焊接特性和焊接電源的焊接特性。母材成分不同焊接性能不同,版例如焊後變形量不同權等,其中合金元素是影響焊接性能的重要因素;焊接電源特性分為靜特性和動特性,靜特性也叫外特性 分為下降特性和平特性, 動特性是負載變化的輸出電流和輸出電壓對時間的關系。
③ 焊縫連接的特性有哪些
焊接來連接(welded connection)是現代鋼結構自最主要的連接方法。
其優點是:構造簡單,任何形式的構件都可直接相連;用料經濟,不削弱截面;製作加工方便,可實現自動化操作;連接的密閉性好,結構剛度大。
其缺點是:在焊縫附近的熱影響區內,鋼材的金相組織發生改變,導致局部材質變脆;焊接殘余應力和殘余變形使受壓構件承載力降低;焊接結構對裂紋很敏感,局部裂紋一旦發生,就容易擴展到整體,低溫冷脆問題較為突出
④ 歸納各種常見焊接熱源的主要特徵
1) 手工焊條電弧焊接:工作原理:手工電弧焊由焊接電源、焊接電纜、焊鉗、焊條、焊件、電弧構成迴路,焊接時電弧在焊條與被焊件之間燃燒, 電弧熱使工件和焊條同時熔化成熔池,焊條的葯皮熔化或燃燒, 產生渣氣,保護熔池;當電弧向前移動時, 熔池冷卻凝固而新的熔池不斷產生, 形成連續的焊縫。優點:設備簡單,操作靈活,適應性強。缺點:生產效率低,勞動強度大,對焊工要求高。
2)手工鎢極氬弧焊:工作原理:以非熔化極(鎢極)作為電極,工件作為另一個電極,電弧在非熔化極和工件之間燃燒,使焊材及母材熔化成液態形成熔池,同時外加惰性氣體作為電弧介質並保護電弧及焊接區的一種焊接方法。優點:氬氣保護,可焊接易氧化、氮化、化學活潑性強的有色金屬、不銹鋼和各種合金;鎢極電弧穩定,可焊接薄件;焊縫成分可控,無飛濺,成形美觀。
3)埋弧自動焊:工作原理:焊接動作由機械裝置自動完成,電弧在顆粒狀焊劑層下燃燒,連續送進的焊絲在焊劑覆蓋下和母材、焊劑一起熔化,形成焊縫的一種方法。優點:生產效率高,焊縫質量穩定,節能,勞動條件好。缺點:無法進行立焊、橫焊或仰焊;靈活性較差,無法焊接不規則焊縫。
4)熔化極氣保焊工作原理:熔化極氣體保護焊採用可熔化的焊絲與被焊工件之間的電弧作為熱源來熔化焊絲與母材金屬,並向焊接區輸送保護氣體,使電弧、熔化的焊絲、熔池及附近的母材金屬免受周圍空氣的有害作用。連續送進的焊絲金屬不斷熔化並過渡到熔池,與熔化的母材金屬融合形成焊縫金屬,從而使工件相互連接起來。優點:流密度大,熱量集中,熔敷率高,焊接速度快。熔深大,適用焊接較厚的焊件;可獲得低氫含量的焊縫。
5)氣焊氧乙炔火焰氣:工作原理:焊接熔池是由火焰加熱所形成,火焰是由可燃氣體與氧氣的化學反應產生的,火焰的熱量使材料熔化。 通常用手將焊絲送入熔化區,把焊接坡口填滿。 火焰氣體覆蓋著熔池,並保護熔池免受空氣的影響。應用范圍:主要用於非合金、低合金鋼板和管材的焊接(也可用於鑄鐵的焊接)、管道工程、車體結構、安裝和維修等焊接。
⑤ 焊接煙塵的特性有哪些
1、顆粒比較小,煙塵呈現片狀。
2、煙塵的粘性比較大。
3、煙塵的溫度比較高,在排風管道和濾芯內,空氣溫度一般是60-80度。
4、焊煙的發塵量比較大。
⑥ 有色金屬的焊接都有哪些特點
壓力容器設備中,除廣泛使用碳鋼、低合金鋼及不銹鋼外,有色金屬如鈦及鈦合金、鎳及鎳基合金、銅及銅合金、鋁及鋁合金的應用也日益增多。由於這些有色金屬具有不銹鋼所不能比的優點,所以在一些特殊的重要場合已佔有主導地位。
一、鎳基耐蝕合金的焊接
鎳及鎳基合金具有特殊的物理、力學及耐腐蝕性能,鎳基耐蝕合金在200℃~1090℃范圍內能耐各種腐蝕介質的侵蝕,同時具有良好的高溫和低溫力學性能。在一些苛刻腐蝕條件下是一般不銹鋼無法取代的優良材料。純鎳一般在工業中應用較少,但在鎳中添加入鉻、銅、鐵、鉬、鋁、鈦、鈮、鎢等元素後,通過固溶強化,不但改善其力學性能,而且可適應於各種腐蝕介質下侵蝕,使其具有優良的耐腐蝕性。
1、鎳基耐蝕合金的焊接特點
①易產生焊接熱裂紋
由於鎳基合金為單相奧氏體組織,所以與不銹鋼相比,具有高的焊接熱裂紋敏感性,特別是焊縫易產生多邊化晶間裂紋。這種裂紋一般為微裂紋,焊後對焊縫進行著色檢查時,短時間都發現不了,但經過一段時間後,才顯露出來。這說明裂紋非常微細,但有時也能發展為較寬的宏觀裂紋。如果在單相奧氏體焊縫中加人固溶強化的鉬、鎢、錳、鉻、鈮等元素,就可有效地抑制鎳基合金焊縫多邊化結晶的發展,從而顯著提高抗熱裂紋能力。限制線能量,避免採用大線能量焊接也有利於防止熱裂紋的產生。此時注意,如果線能量過小,會加速焊縫的凝固結晶速度,更易形成多邊化晶界,在一定應力下有助於多邊化裂紋的產生。
②液態金屬流動性差,焊縫熔深淺
這是鎳基合金的固有特性。靠加大焊接電流不是解決此問題的辦法,因為電流增加會引起裂紋和氣孔,降低接頭的耐蝕性能,所以為了獲得良好的焊縫成形,應採用小擺動工藝,另外要加大坡口角度,減小坡口鈍邊。
2、鎳基耐蝕合金的焊接要點
鎳基合金一般可採用與奧氏體不銹鋼相同的焊接方法進行焊接。這里就最常用的鎢極氣體保護焊和焊條電弧焊進行論述。無論是何種焊接方法,焊前一定要徹底清理焊接區表面,鎳基合金對污染物的危害極為敏感,母材應盡可能在固溶狀態下焊接。
①鎢極氣體保護焊是應用最廣泛的,幾乎適合於任何一種可熔焊的鎳基合金,特別適合於薄件和小截面構件。保護氣體最常用的是氬氣,它成本低,密度大,保護效果好。氬氣中加5%氫氣,有還原作用,一般只用於第一層焊道和單道焊,多層焊的其餘焊道可能要產生氣孔。氦氣保護焊應用較少,但有如下特點,氦氣導熱大,向熔池線能量比較大,能提高焊接速度,減少了氣孔的可能性,但氦弧焊,電流小於60A時,電弧不穩定。
鎢極氣體保護焊焊一般使用直流正接,採用高頻引弧以及電流衰減的收弧技術。在保證焊透的條件下,應採用較小的焊接線能量,多層焊時應控制層間溫度,焊接析出強化合金及熱裂紋敏感性大的合金時,更要注意控制層間溫度。弧長盡量短,薄件焊接時焊槍可不作擺動,但厚板多層焊時,為使熔敷金屬與母材及前道焊縫充分熔合,焊槍仍可適當的擺動。為保證單面焊完全焊透需要用帶凹形槽的銅襯墊,通以保護氣體進行反面保護。為加強焊接區的保護效果,也可在焊嘴後側加一輔助輸入保護氣體的拖罩。
②使用焊條電弧焊時焊接鎳基合金時,由於焊條含合金元素多,且要求防止熱裂紋,一般鎳基合金焊條的葯皮類型為鹼性葯皮,採用直流反接。為了防止合金元素的燒損和控制線能量,焊接時要求盡可能採用小規范,與同規格的不銹鋼焊條相比,電流可降低20%~30%。由於液態金屬的流動性差,為防止未熔合和氣孔等缺陷,一般要求在焊接過程中適當擺動,但不能過大。在焊縫介面再引弧時,應採用反向引弧技術,以利調整介面處焊縫平滑並且能有利於抑制氣孔的發生。採用逆向收弧,把弧坑填滿,防止弧坑裂紋,必要時要對弧坑進行打磨。
二、鈦及鈦合金的焊接
鈦及鈦合金具有良好的耐腐蝕性能,在氧化性、中性及有氯離子介質中,其耐腐蝕性優於不銹鋼,有時甚至為普通奧氏體不銹鋼1Cr18Ni9Ti的10倍。工業純鈦塑性好,但強度較低,具有良好的低溫性能,其線膨脹系數和熱導率都不大,這都不會給焊接帶來困難。鈦合金的比強度大,又具有良好的韌性和焊接性,在航天工業中應用最為廣泛。鈦及鈦合金在我國現行標准中按其退火態的組織分為α鈦合金、β鈦合金和α+β鈦合金三類,分別用TA、TB和TC表示。在石化行業中的壓力容器設備中,牌號為TA2這種工業純鈦使用為居多。
1、鈦及鈦合金的焊接特點
①雜質元素的沾污引起脆化
鈦是一種活性元素,特別是在焊接高溫下非常容易吸收氮、氫、氧,從而使焊縫的硬度、強度增加,塑性、韌性降低,引起脆化。碳也會與鈦形成硬而脆的TiC,易引起裂紋。因此,鈦及鈦合金焊接時必須進行有效的保護,防止空氣或其他因素的污染。因此鈦及鈦合金焊接不能採用氣焊或焊條電弧焊方法進行,否則接頭滿足不了焊接質量要求,一般只能採用氬氣保護或在真空下焊接。
②焊接相變引起的接頭塑性下降
常用的工業純鈦為α合金,焊接時由於鈦導熱差、比熱小、高溫停留時間長、冷卻速度慢,易形成粗大結晶;若採用加速冷卻,又易產生針狀α組織,也會使塑性下降。
③產生焊接裂紋
鈦合金焊接時產生的焊接熱裂紋的幾率極小,只有當焊絲或母材質量不問題時才可能產生熱裂紋。由氫引起的冷裂紋是鈦合金焊接時應注意防止的,焊接時熔池和低溫區母材中的氫向熱影響區擴散,引起熱影響區含氫量增加,造成熱影響區出現延遲裂紋。
④氣孔
鈦及鈦合金焊接時氣孔是最常見的焊接缺陷。焊絲或母材表面清理不幹凈或氬氣不純都會造成氣孔產生,因此保護氣-氬氣純度要求在99.99%以上,焊絲及工件表面要酸洗、凈水沖洗後烘乾。
2、鈦及鈦合金的鎢極氬弧焊
鈦及鈦合金焊接時採用最多的就是鎢極氬弧焊,對於較厚的工件也可採用熔化極氬弧焊,對於技術要求嚴格的航天工業中一些重要設備經常也採用真空電子束焊接。
①焊絲的選用。焊絲的選用應使在正常焊接工藝下的焊縫在焊後狀態的抗拉強度不低於母材退火狀態的標准抗拉強度下限值,焊縫焊後狀態的塑性和耐蝕性能不低於退火狀態下的母材或與母材相當,焊接性能良好,能滿足鈦容器製造和使用的要求。
焊絲中的氮、氧、碳、氫、鐵等雜質元素的標准含量上限值應大大低於母材中雜質元素的標准含量上限值。不允許從所焊母材上裁條充當焊絲,應採用JB/T4745-2002《鈦制焊接容器》中附錄D中的焊絲用作鈦容器用焊絲。雜質元素含量不高於JB/T4745-2002中附錄D的其他標準的焊絲也可使用。
一般情況下可按表根據所焊母材牌號來選擇相應的焊絲牌號,並通過JB/T4745-2002中附錄B的焊接工藝評定驗證。
不同牌號的鈦材相焊時,一般按耐蝕性能較好和強度級別較低的母材去選擇焊絲材料。
②保護氣體的選用。焊接用氬氣純度不應低於99.99%,露點不應高於-50℃,且符合GB4842-1984的規定。當瓶裝氬氣的壓力低於0.5MPa時不宜使用。
③鎢極。鎢極氬弧焊時推薦採用鈰鎢電極。電極直徑應根據焊接電流大小選擇,電極端部應為圓錐形。
鈦及鈦合金氬弧焊時,最關鍵的是要將焊接高溫區與空氣隔離開,為了有效地進行保護,焊炬噴嘴、拖罩和背面保護裝置通以適量流量的氬氣是極其重要的。焊縫及近縫區顏色是衡量保護效果的標志,銀白色、淺黃色表示保護效果好,深黃色為輕微氧化,一般情況下還是允許的,金紫色表示中度氧化,深藍色表示嚴重氧化,至於灰白色是不允許的,表示焊縫已經變質,必須報廢重焊。
三、鋁及鋁合金的焊接
壓力容器中常用純鋁、鋁-錳合金和鋁-鎂合金。鋁錳合金僅可變形強化,其強度比純鋁略高,成形工藝及耐蝕性、焊接性好。鋁鎂合金僅可變形強化,其ω(Mg)一般為0.5%~7.0%,與其他鋁合金相比,鋁鎂合金具有中等強度,其延性、焊接性能、耐蝕性良好。
鋁在空氣和氧化性水溶液介質中,表面產生緻密的氧化鋁鈍化膜,因而在氧化性介質中具有良好的耐蝕性。鋁在低溫下與鐵素體鋼不同,不存在脆性轉變,鋁容器的設計溫度可達-269℃。
1、鋁及鋁合金焊接特點
鋁極易氧化,在常溫空氣中即生成緻密的A12O3薄膜,焊接時造成夾渣,氧化鋁膜還會吸附水分,焊接時會促使焊縫生成氣孔。焊接時,對熔化金屬和高溫金屬應進行有效的保護。
鋁的線膨脹系數約為鋼的2倍,鋁凝固時的體積收縮率也比鋼大得多,鋁焊接時熔池容易產生縮孔、縮松、熱裂紋及較高的內應力。
鋁及鋁合金液體熔池易吸收氫等氣體,當焊後冷卻凝固過程中來不及析出,在焊縫中形成氣孔。
當母材為變形強化或固溶時效強化時,焊接熱影響區強度將下降。
2、焊接方法
鋁及鋁合金適用的方法很多,壓力容器上施焊時,經常採用鎢極氬弧焊和熔化極氣體保護焊,這兩種焊接方法熱量比較集中,電弧燃燒穩定,由於採用隋性氣體,保護良好,容易控制雜質和水分來源,減少熱裂紋和氣孔的發生,焊縫質量優良,鎢極氬弧焊一般用於薄板,熔化極氣體保護焊用於厚板。
3、焊絲材料
選用的焊絲應使焊縫金屬的抗拉強度不低於母材(非熱處理強化鋁為退火狀態,熱處理強化鋁為指定值)的標准抗拉強度下限值或指定值,並使焊縫金屬的塑性和耐蝕性不低於或接近於母材,或滿足圖樣要求。
為保證焊縫的耐蝕性,在焊接純鋁時宜用純度與母材相近或純度比母材稍高的焊絲。在焊接鋁鎂合金或鋁錳合金等耐蝕鋁合金時,宜採用含鎂量或含錳量與母材相近或比母材稍高的焊絲。
焊絲可從GB/T10858-1989《鋁及鋁合金焊絲》中選取,也可從化學成分與變形鋁及鋁合金相同(符合GB/T3190-1996《變形鋁及鋁合金化學成分》)的絲材中選取,如按(GB/T3197-2001《焊條用鋁合金線》。
常用的保護氣體有氬氣和氮氣,其氣體純度應大於99.9%。
由於鈰鎢極化學穩定性好,陰極斑點小,壓降低,燒損少,易於引弧,電弧穩定性好。宜選用鈰鎢極。
三、銅及銅合金的焊接
常用的銅及銅合金有四種:純銅,黃銅,青銅和白銅。在壓力容器中純銅與黃銅使用較多。
純銅是ω(Cu)不低於99.5%的工業純銅,具有良好的導電性、導熱性,良好的常溫和低溫塑性,以及對海水等的耐腐蝕性,純銅中的雜志如氧、硫、鉍等都不同程度地降低純銅的優良性能,增加材料的冷脆性和接頭中出現熱裂紋的傾向。黃銅系銅和鋅組成的二元合金,黃銅與純銅強度、硬度和耐腐蝕能力都高,且具有一定塑性,能很好承受熱加工和冷加工,ω(Zn)在<30%~40%的黃銅具有α相與少量的β相,因而提高了強度、塑性、耐蝕性、但對焊接性不利。
1、銅及銅合金焊接特點
銅及銅合金導熱率高,線脹系數和收縮率大,當焊接線能量不足時,則容易產生未熔合、未焊透,焊後變形也較嚴重,外觀成形差。焊接時,銅能與其中雜質生成多種低熔點共晶,在焊接應力作用下產生熱裂紋,雜質中以氧的危害性最大。
熔焊銅及銅合金時,由於溶解的氫和氧化還原反應引起氣孔,幾乎分布在焊縫的各個部位。同時,由於晶粒嚴重長大,雜質和合金元素的摻人,有用合金元素的氧化、蒸發,使焊接接頭性能發生很大的變化。
2、焊接方法
焊接銅及銅合金需要大功率、高能束的熔焊熱源,熱效率越高,能量越集中愈有利,不同厚度的材料對於不同焊接方法有其適應性,薄板焊接以鎢極氬弧焊、焊條電弧焊和氣焊為好,中板以熔化極氣體保護焊和電子束焊較合適,厚板則建議使用埋弧焊、MIG焊和電渣焊。
3、焊接材料
①焊條
焊條電弧焊用焊條分為純銅、青銅兩類,由於黃銅中的鋅容易蒸發,因而極少採用焊條電弧焊。純銅焊條型號ECu為低氫型葯皮,用於焊接脫氧或無氧銅結構件,在大氣及海水中具有良好的耐腐蝕性。
②埋弧焊用焊絲與焊劑
埋弧焊的特點是電熱效率高,對熔池的保護效果好。大、中厚度銅焊件的焊接工藝與鋼基本相同,可選用高硅高錳焊劑HJ431,但可能發生合金元素向焊縫過渡,對接頭性能要求高的焊件宜選用HJ260、HJ150。焊絲則選用純銅焊絲、青銅焊絲、焊接純銅和黃銅。
③氣體保護焊用焊絲
銅薄板和中板焊接,使用氣保焊逐漸取代氣焊、焊條電弧焊,電極一般採用釷鎢極(EWTh-2)。焊接純銅,一般選用含有ω(Si)0.5%,ω(P)0.15%或ω(Ti)0.3%~0.5%脫氧劑的無氧銅焊絲,如HSCu。焊接普通黃銅,採用無氧銅加脫氧劑的錫青銅焊絲,如HSCuSn。對高強度黃銅則採用青銅加脫氧劑的硅青銅焊絲或鋁青銅焊絲,如:HSCuAl、HSCuSi等。
保護氣體則選用氬氣(Ar)或Ar+He(Ar+He混合比50/50或30/70),採用Ar+He混合氣體的最大優點是可以改善焊縫金屬的潤濕性,提高焊接質量。由於氦氣保護時輸入熱量比氬氣保護時大,故可降低預熱溫度。
4、焊接工藝
①焊前要預熱或在焊接過程中採取同步加熱的措施。
②嚴格限制銅中的雜質含量,通過焊絲加人硅、錳、磷等合金元素,增加對焊縫的脫氧能力,選用能獲得α+β組織的焊絲等措施防止焊接接頭裂紋與減少氣孔。
③控制焊後冷卻速度,防止焊接變形。
⑦ 焊接按物理化學特點分可分為幾類各有什麼特性
分為熔焊,釺焊,壓焊,熔焊的特點主要是金屬熔化形成的焊接,釺焊是利用低熔點金屬來焊接高熔點的金屬,壓焊主要是利用壓力和高溫的作用來實現連接
⑧ 球墨鑄鐵有哪些焊接特性
球墨鑄鐵強度和塑性較好,所以焊接時,除了保證不產生缺陷外,還回應從等強度觀點出發,答使焊縫亦有較好的強度和塑性。
球墨鑄鐵常用鎂來作為球化劑,但鎂卻是阻礙石墨化元素。所以焊接時白口現象比較嚴重,這是矛盾的因素,也是焊接球墨鑄鐵的主要困難。
球墨鑄鐵焊接時,熱影響區冷卻速度太快,其中奧氏體會轉變成馬氏體,即形成悴火組織,其硬度可高達620-700HBS,使焊後機械加工發生困難。
所以,球墨鑄鐵的焊接性比灰鑄鐵還要差一點。但是由於球墨鐵本身的強度和塑性都好,焊接時不易產生裂紋,這是其有利的一面。
鑄鐵的焊補方法主要分氣焊、釺焊、焊條電弧焊和灰鑄鐵的手工電渣焊、細絲CO2氣體保護焊。其中氣焊方法中又分為熱焊法和不預熱法。焊條電弧焊方法中分為冷焊法、半熱焊法、不預熱焊法和熱焊法。
⑨ 二氧化碳焊接的特性是什麼
用二氧化碳氣體作為保護氣體的電弧焊接方法,稱為二氧化碳氣體保護焊,簡版稱二氧化碳焊。二氧化碳氣體保權護焊具有如下特點:
(1)二氧化碳氣體價廉易得,而且消耗電能少,是一種既經濟,又便於自動化生產的焊接方法。一般情況下,二氧化碳氣體保護焊的成本僅為手工電弧焊的37%-42%,為埋弧焊的40%。(2)生產效率高。焊接電流密度大,焊絲熔化率高,母材熔透深度大,對於10毫米左右的鋼板,可以不開坡口直接焊接,焊後渣很少,一般可不清渣,焊接質量穩定。(3)電流密度大,電弧熱量集中,焊接後工件變形較小。(4)對油、銹的敏感程度較小,可減少工件和焊絲的清理工作量。(5)二氧化碳焊的焊縫金屬含氫量小,焊接低合金高強度鋼時,產生冷裂紋的傾向小。(6)飛濺較多,焊縫成形不夠美觀,清理飛濺費時間。(7)二氧化碳屬於弱氧化性,故不能用於焊接鋁、鎂等化學活性強的金屬。
⑩ 鋼材的焊接特性受什麼影響
1、材料包括母材和焊接材料。與母材有關的影響因素有母材的化學成分,冶煉軋制狀態、熱處理狀態、組織狀態和力學性能等,其中尤以化學成分影響最大。
2、化學成分是鋼材焊接性的主要影響因素。如果鋼材只是依靠合金元素實現固溶強化,焊接過程中就容易使焊縫金屬及熱影響區與母材有良好的匹配性能。如果鋼材為較復雜的合金系,並通過熱處理、變形加工等方式實現固溶強化,則不易獲得與母材完全匹配的焊縫金屬或接頭
3、鋼的冶煉方法、軋制工藝及熱處理狀態等,對焊接性也都有不同程度的影響。例如,近年來研發的各種CF鋼(抗裂鋼)、TMCP鋼(控軋鋼)等,就是通過精煉提純、控制軋制工藝等手段,以使其焊接性有重大改善。
4、焊接材料直接參與焊接過程一系列化學冶金反應,決定著焊縫金屬的成分、組織和缺欠的形成。如果選擇的焊接材料與母材匹配不當,不僅不能獲得滿足使用要求的接頭,還會引起裂紋等缺欠的產生和脆化等力學性能的變化,所以正確選用焊接材料是保證獲得優質焊接接頭的重要冶金條件。
(10)焊接連接有哪些特性擴展閱讀:
工藝條件因素
工藝條件因素包括焊接方法、焊接參數、預熱、後熱及焊後熱處理等。它們對焊接性的影響,首先在於諸如其焊接熱源的特點,功率密度、功率大小等,它們直接決定接頭的溫度場和熱循環的各種參數,例如熱輸入的大小、高溫停留時間、相變區的冷卻速度,從而對焊縫及熱影響區范圍的大小、組織性能和產生缺欠的敏感性等有明顯的影響。
其次是諸工藝方面的因素決定了熔池和近縫區的保護方式及冶金條件,例如熔渣保護、渣、氣聯合保護等都會影響冶金過程;採用焊前預熱和焊後緩冷可降低接頭的冷卻速度,有利於降低接頭的淬硬傾向和裂紋敏感性;選擇合理的焊接順序可以改善結構的拘束程度和應力狀態。