二氧化碳焊接短路過渡在哪些條件下使用
⑴ 焊接注意事項
1、 短路過渡焊接
CO2電弧焊中短路過渡應用最廣泛,主要用於薄板及全位置焊接,規范參數為電弧電壓焊接電流、焊接速度、焊接迴路電感、氣體流量及焊絲伸出長度等。
(1)電弧電壓和焊接電流,對於一定的焊絲直徑及焊接電流(即送絲速度),必須匹配合適的電弧電壓,才能獲得穩定的短路過渡過程,此時的飛濺最少。
不同直徑焊絲的短路過渡時參數如表:
焊絲直徑(㎜) 0.8 1.2 1.6
電弧電壓(V) 18 19 20
焊接電流(A) 100-110 120-135 140-180
(2) 焊接迴路電感,電感主要作用:
a 調節短路電流增長速度di/dt, di/dt過小發生大顆粒飛濺至焊絲大段爆斷而使電弧熄滅,di/dt 過大則產生大量小顆粒金屬飛濺。
b 調節電弧燃燒時間控制母材熔深。
c 焊接速度。焊接速度過快會引起焊縫兩側吹邊,焊接速度過慢容易發生燒穿和焊縫組織粗大等缺陷。
d 氣體流量大小取決於接頭型式板厚、焊接規范及作業條件等因素。通常細絲焊接時氣流量為5-15 L/min,粗絲焊接時為20-25 L/min。
e 焊絲伸長度。合適的焊絲伸出長度應為焊絲直徑的10-20倍。焊接過程中,盡量保持在10-20㎜范圍內,伸出長度增加則焊接電流下降,母材熔深減小,反之則電流增大熔深增加。電阻率越大的焊絲這種影響越明顯。
f 電源極性。CO2電弧焊一般採用直流反極性時飛濺小,電弧穩定母材熔深大、成型好,而且焊縫金屬含氫量低。
2、 細顆粒過渡。
(1) 在CO2氣體中,對於一定的直徑焊絲,當電流增大到一定數值後同時配以較高的電弧壓,焊絲的熔化金屬即以小顆粒自由飛落進入熔池,這種過渡形式為細顆粒過渡。
細顆粒過渡時電弧穿透力強母材熔深大,適用於中厚板焊接結構。細顆粒過渡焊接時也採用直流反接法。
(2) 達到細顆粒過渡的電流和電壓范圍:
焊絲直徑(mm) 電流下限值(A) 電弧電壓(V)
1.2 300 34- 35
1.6 400
2.0 500
隨著電流增大電弧電壓必須提高,否則電弧對熔池金屬有沖刷作用,焊縫成形惡化,適當提高電弧電壓能避免這種現象。然而電弧電壓太高飛濺會顯著增大,在同樣電流下,隨焊絲直徑增大電弧電壓降低。CO2細顆粒過渡和在氬弧焊中的噴射過渡有著實質性差別。氬弧焊中的噴射過渡是軸向的,而CO2中的細顆粒過渡是非軸向的,仍有一定金屬飛濺。另外氬弧焊中的噴射過渡界電流有明顯較變特徵。(尤其是焊接不銹鋼及黑色金屬)而細顆粒過渡則沒有。
3、 減少金屬飛濺措施:
(1) 正確選擇工藝參數,焊接電弧電壓:在電弧中對於每種直徑焊絲其飛濺率和焊接電流之間都存在著一定規律。在小電流區,短路過渡飛濺較小,進入大電流區(細顆粒過渡區)飛濺率也較小。
(2) 焊槍角度:焊槍垂直時飛濺量最少,傾向角度越大飛濺越大。焊槍前傾或後傾最好不超過20度。
(3) 焊絲伸出長度:焊絲伸出長對飛濺影響也很大,焊絲伸出長度從20增至30㎜,飛濺量增加約5%,因而伸出長度應盡可能縮短。
4、 保護氣體種類不同其焊接方法有區別。
(1) 利用CO2氣體為保護氣的焊接方法為CO2電弧焊。在供氣中要加裝預熱器。因為液態CO2在不斷氣化時吸收大量熱能,經減壓器減壓後氣體體積膨脹也會使氣體溫度下降,為了防止CO2氣體中水分在鋼瓶出口及減壓閥中結冰而堵塞氣路,所以在鋼瓶出口及減壓之間將CO2氣體經預熱器進行加熱。
(2) CO2+Ar氣作為保護氣的焊接方法MAG焊接法,稱為物性氣體保護。此種焊接方法適用於不銹鋼焊接。
(3) Ar作為氣體保護焊的MIG焊接方法,此種焊接方法適用於鋁及鋁合金焊接。
五、基本操作技術
1、 注意事項
(1)電源、氣瓶、送絲機、焊槍等連接方式參閱說明書。
(2)選擇正確的持槍姿勢:
a 身體與焊槍處於自然狀態,手腕能靈活帶動焊槍平移或轉動。
b 焊接過程中軟管電纜最小曲率半徑應大於300m/m焊接時可任意拖動焊槍。
c 焊接過程中能維持焊槍傾角不變還能清楚方便觀察熔池。
d 保持焊槍勻速向前移動,可根據電流大小、熔池的形狀、工件熔和情況調整焊槍前移速度,力爭勻速前進。
2、 基本操作
(1) 檢查全部連接是否正確,水、電、氣連接完畢合上電源,調整焊接規范參數。
(2) 引弧:CO2氣體保護焊採用碰撞引弧,引弧時不必抬起焊槍,只要保證焊槍與工作距離。
a 引弧前先按遙控盒上的點動開關或焊槍上的控制開關將焊絲送出槍嘴,保持伸出長度10 ~15 mm。
b 將焊槍按要求放在引弧處,此時焊絲端部與工件未接觸,槍嘴高度由焊接電流決定。
c 按下焊槍上控制開關,焊機自動提前送氣,延時接通電源,保持高電壓、慢送絲,當焊絲碰撞工件短路後自然引燃電弧。短路時,焊槍有自動頂起的傾向,故引弧時要稍用力下壓焊槍,防止因焊槍抬起太高,電弧太長而熄滅。
3、 焊接
引燃電弧後,通常採用左焊法,焊接過程中要保持焊槍適當的傾斜和槍嘴高度,使焊接盡可能地勻速移動。當坡口較寬時為保證二側熔合好,焊槍作橫向擺動。焊接時,必須根據焊接實際效果判斷焊接工藝參數是否合適。看清熔池情況、電弧穩定性、飛濺大小及焊縫成形的好壞來修正焊接工藝參數,直至滿意為止。
4、 收弧
焊接結束前必須收弧。若收弧不當容易產生弧坑並出現裂紋、氣孔等缺陷。焊接結束前必須採取措施。
(1)焊機有收弧坑控制電路。焊槍在收弧處停止前進,同時接通此電路,焊接電流電弧電壓自動減小,待熔池填滿。
(2) 若焊機沒有弧坑控制電路或因電流小沒有使用弧坑控制電路。在收弧處焊槍停止前進,並在熔池未凝固時反復斷弧、引弧幾次,直至填滿弧坑為止。操作要快,若熔池已凝固才引弧,則可能產生未熔合和氣孔等缺陷。
(一定要記住哦!我花了很多心血才問道的。)
⑵ 二氧化碳氣體保護焊短路過渡對焊接電源有什麼要求
二氧化碳氣體保護焊短路過渡對焊接電源沒有什麼要求,主要是焊接電流、電壓的調整.
⑶ 二氧化碳氣體保護焊的過渡形式有幾種謝謝了
對於CO2氣體保護焊而言,主要存在三種熔滴過渡形式,即短路過渡、滴狀過渡、射滴過渡。以下簡過這三種過渡形式的特點、與工藝參數(主要是電流、電壓)的關系以及其應用范圍。
短路過渡。短路過度是在細焊絲、低電壓和小電流情況下發生的。焊絲熔化後由於斑點壓力對熔滴有排斥作用,使熔滴懸掛於焊絲端頭並積聚長大,甚至與母材的深池相連並過渡到熔池中,這就是短路過渡形式,見下圖:
1)過渡主要特徵是短路時間和短路頻率。影響短路過渡穩定性的因素主要是電壓,電壓約為18~21V時,短路時間較長,過程較穩定。
焊接電流和焊絲直徑也即焊絲的電流密度對短路過渡過程的影響也很大。在表(1)中列出了不同焊絲直徑時的允許電流范圍和最佳電流范圍。在最佳電流范圍內短路頻率較高,短路過渡過程穩定,飛濺大,必須採取增加電路電感的方法以降低短路電流的增長速度,避免產生熔滴的瞬時爆炸和飛濺。另外一個措施是採用Ar-CO2混合氣體(各約50%),因富Ar氣體下斑點壓力較小,電弧對熔滴的排斥力較小,過程比較穩定和平靜。細焊絲工作范圍較寬,焊接過程易於控制,粗焊絲則工作范圍很窄,過程難以控制。因此只有焊絲直徑在ф1.2mm以下時,才可能採用短路過渡形式。短路過渡形式一般適用於薄鋼板的焊接。
CO2氣體保護焊穩定短路過渡時不同焊絲直徑的電流范圍
焊絲直徑(mm)
允許電流(A)
最佳電流(A)
0.8
60~160
60~100
1.0
70~240
70~120
1.2
90~260
90~175
1.6
110~290
110~200
2.0
120~350
120~250
2)滴狀過渡。滴狀過渡是在電弧稍長,電壓較高時產生的,此時熔滴受到較大的斑點壓力、熔滴在CO2氣氛中一般不能沿焊絲軸向過渡到熔池中,而是偏離焊絲軸向,甚至於上翹,如下圖所示。由於產生較大的飛濺,因此滴狀過渡形式在生產中很難採用。只有在富氬混合氣焊接時,熔滴才能形成向過渡和得到穩定的電弧過程。但因富氬氣體的成本是純CO2氣體的幾倍,在建築鋼結構的生產和施工安裝中應用較少。
3)射滴過渡。CO2氣體保護焊的射滴過渡是一種自由過渡的形式,但其中也伴有瞬時短路。它是在φ1.6~3.0的焊絲,大電流條件下產生的,是一種穩定的電弧過程。
焊絲直徑φ1.2~3.0時,如電流較大,電弧電壓較高,能產生如前所述的滴狀過渡,但如電弧電壓降低,電弧的強烈吹力將會排除部分熔池金屬,而使電弧部分潛入熔池的凹坑中,隨著電流增在則焊絲端頭幾乎全部潛入熔池,同時熔滴尺寸減小,過渡頻率增加,飛濺明顯降低,形成典型的射滴過渡,如下所示。但電流增大有一定限度,電流過大時,電弧力過大,會強烈擾動熔池,破壞焊接過程。
由於射滴過渡對電源動特性要求不高,而且電流大,熔敷速度高,適合於中厚板的焊接,不易出現未熔合缺陷,但由於熔深大,熔寬也大,射滴過渡用於空間位置焊接時,焊縫成形不易控制。
⑷ <<特種設備焊接操作人員考核細則》中A4.3.7(2)條短路弧怎樣理解,我們的CO2氣體保護焊算什麼弧
熔化抄極氣體保護焊的襲過渡形式大致分三種:短路過渡、粗滴過渡、噴射過渡。
短路過渡是在採用細焊絲、小電流、低電弧電壓焊接時出現的。
粗滴過渡是採用中等工藝參數以上的電流和電壓時發生的,電弧較長,熔滴呈顆粒狀,粗滴過渡分兩種形式:一是短路的,二是無短路的。
噴射過度是在粗滴過渡的基礎上,當增大的焊接電流達到一定數值時,即會變成噴射過渡。
CO2焊接時,主要有兩種形式:一是短路過渡,二是粗滴過渡。而噴射過渡在CO2焊接時是很難出現的。
⑸ 二氧化碳保護焊實芯焊絲的熔滴過渡形態有幾種,怎麼來區分呢
MAG焊熔滴過渡形態可以分為短路過渡,噴射過渡,亞射流過渡,脈沖過渡等,
依據材質,焊件尺寸,焊接姿勢而使用。
1.短路過渡
MIG焊熔滴短路過程與二氧化碳電弧焊熔滴短路過渡是相同的,也是使用較細的焊絲在低電壓,小電流下產生的一種可得用的熔滴過渡方式,區別在於MIG焊熔滴短路過渡是在更低的電壓下進行並且過渡過程穩定,飛濺少,適合進行薄板高速焊接或窨位置焊縫的焊接。其特點是採用小電流和低電壓焊接時,熔滴在未脫離焊絲端頭前就與熔池直接接觸,電弧瞬時熄滅短路,熔滴在短路電流產生的電磁收縮力用液體金屬的表面張力作用下過渡到熔池中。短路過渡形式的電弧穩定,飛濺較小,成形良好,不過熔深較淺。
2.噴射過渡
MIG焊接熔滴噴射過渡主要用於中等厚度和大厚度板水平對接和水平角接。MIG電弧能夠產生熔滴噴射過渡的原因是電弧形態比較擴展。
MIG焊一般採用焊絲為陽極,而把焊絲接負或採用交流的較少。其原因有兩項,一是要充分利用電弧對母材的清理作用,另一原因是為了使熔滴細化,並且能形成平穩過渡。
在小電流時,由於電磁拘束力小,熔滴主要受重力的作用而產生過渡,其顆粒較焊絲直徑更大。這種焊接過渡工藝形成的焊縫易出現熔合不良,未焊透,余高過大等缺陷,因此在實際焊接中一般不用。當增大電流後,電極前端被削成尖狀,熔滴得以細顆粒化,這時的熔滴過渡形態稱作「噴射過渡」。
1) 射滴過渡
射滴過渡時的電弧是鍾罩形。鋁及合金熔化極氬弧焊及鋼焊絲的脈沖焊經常是射滴過渡形式。易形成未熔透等缺陷。
2) 射流過渡
焊絲前端在電弧中被削成鉛筆狀,熔滴從前端流出,以很細小的顆粒進行過渡。其過渡頻度最大可以達到每秒500次。此時強大的等離子流力和高速熔滴的沖擊力在熔池中部產生很大的挖掘作用,將熔池中部的液體金屬排向兩邊和後側,使得電弧直接加熱熔池底部的金屬。於是在熔池中部形成了猶如指狀的熔池凹陷,通常稱為指狀熔深。這種焊縫在其根部易於形成氣孔,未熔通等缺陷,當面氬中加入少量二氧化碳,氧氣,氦氣時,可使這種指狀熔深得到改善。另外,在焊接鋁及鋁合金時,易出現焊縫起皺現象,這需要控制好保護氣體和焊接電流來避免。
3,亞射流過渡
這是介於短路過渡與射滴過渡之間的一種過渡形式。電弧特徵是弧長較短。這種過渡形式主要用於平焊及橫焊位置的鋁及鋁合金焊接。其優點是焊縫外形用熔深非常的均勻一致,可避免指狀熔深。
4,脈沖過渡
在平焊位置通過脈沖參數的調整,使熔滴過渡按照所希望的方式進行。進行空間位置焊縫焊接時,由於脈沖電流大,使熔滴過渡具有更強的方向性,有利於熔滴沿電弧軸線順利過渡到熔池中。由於脈沖平均電流小,所形成的熔池體積也會小一些,再加上脈沖加熱和熔滴過渡是間斷性發生的,所以熔池金屬即使處於立焊位置也不至於流淌,保持了熔池狀態的穩定性。對於熱敏感性較大的材料,通過平均電流調節對母材的熱輸入或焊接線能量使焊縫金屬和熱影響區的過熱現象降低,從而使接頭具有良好的品質。裂紋傾向性降低。此外,脈沖作用方式可以防止熔池出現單向性結晶,也能夠提高焊縫性能。
⑹ co2氣體保護焊中短路過渡的定義是什麼什麼情況下不能用
短路過渡是在採用細絲CO2焊和小電流\低電壓焊接時出現.其過程是,在電弧很短\焊絲未端的熔滴還未形專成大滴時,即與熔池接觸短路,電弧熄火,依靠電磁收縮力及熔池表面張力的共同作用而形成熔滴過渡 ;以後電弧又重新引燃,這種周而復始的周期性的短路-燃弧交替過程,即稱為短路過渡.每秒鍾熔滴過渡幾十次至一百多次.短路過渡電流小,電弧穩定,飛濺小,焊縫成形良好,宜用於細絲焊屬接薄板及全位置焊接.
⑺ 二氧化碳氣體保護焊焊接薄板及全位置焊時,熔滴過渡形式
二氧化碳氣體保護電弧焊,簡稱:二保焊; 寫作:CO2焊。
短路過渡形式適合薄板及全內位置焊接
短路過渡條件:容細焊絲;低電壓;小電流。
細焊絲(直徑1.6毫米以下),採用短路過渡形式 [ 低電壓,通常不超過24V; 小電流(視焊絲直徑等因素而定) 焊接]。
.
⑻ CO2氣體保護焊,φ1.2葯芯焊絲,逆變氣體保護焊機,電流190-230,電壓25-30,是不是短路過渡
不是。
電流和電壓都比短路過渡參數要高。
⑼ 二氧化碳保護焊0.8和1.2焊絲的電流電壓分別是多少
0.8焊接電流80~140A。焊接電壓18~22V。1.2焊接電流110·180A,焊接電壓20~23V。
根據焊絲直徑過渡形式(短路過渡 顆粒噴射過度),來選擇焊接電壓高低 焊接電流大小。
0.8㎜焊絲只能採用短路過渡。推薦焊接參數:焊接電流80~140A。焊接電壓18~22V,氣體流量5~10L/每分鍾。
1.2㎜直徑焊絲,既可以短路過渡,也可以顆粒噴射過度。短路過渡焊接范圍推薦參數:焊接電流110·180A,焊接電壓20~23V,氣體流量7~12L/每分鍾。
噴射顆粒過度焊接范圍參數推薦:焊接電流300~400A,焊接電壓等於大於34V,氣體流量12~15L/每分鍾。
二保焊屬於平硬外特性電源輸出,單一調節焊接電壓無法焊接。焊接電壓 焊接電流必須在一定的范圍區域之內才可以焊接。
(9)二氧化碳焊接短路過渡在哪些條件下使用擴展閱讀:
(2)焊接電流
焊接電流的大小主要取決於送絲速度。送絲的速度越快,則焊接的電流就越大。焊接電流對焊縫的熔深的影響最大。當焊接電流為60~250A,即以短路過渡形式焊接時,焊縫熔深一般為1mm~2mm;只有在300A以上時,熔深才明顯的增大。
(3)電弧電壓
短路過渡時,則電弧電壓可用下式計算:
U=0.04I+16±2(V)
當電流在200A以上時,則電弧電壓的計算公式如下。
U=0.04I+20±2(V)
4)焊接速度
半自動焊接時,熟練的焊工的焊接速度為18m/h~36m/h;自動焊時,焊接速度可高達150m/h。
(5)焊絲的伸出長度
一般情況下焊絲的伸出長度約為焊絲直徑的10倍左右,並隨焊接電流的增加而增加。
(6)氣體的流量
正常焊接時,200A以下薄板焊接,CO2的流量為10L/min~25L/min;200A以上厚板焊接,CO2的流量為15L/min~25L/min;粗絲大規范自動焊為25L/min~50L/min。
具體工藝參數
電流:一般為:150-350安培,常用規范為200-300安培。
電壓:一般范圍值:22-40伏特,常用規范為26-32伏特。
干伸長度:焊絲從導電嘴前端伸出的長度,一般為焊絲直徑的10-15倍,即10-15毫米長。
焊接速度:每分鍾焊接的焊縫長度,單焊道按時每分鍾300-500毫米,個別達到25000毫米/分鍾(比如截齒的焊絲用的LQ605),擺動焊接時,120-200毫米/分鍾。