焊接內部缺陷都有哪些
❶ 焊接時常見的焊縫內部缺陷有
根據 GB 6417-1986《金來屬熔化焊焊縫缺陷分自類及說明》國標,
熔化焊焊接缺陷分為六類:
1,裂紋。
2,孔穴(氣孔)。
3,固體夾雜(夾渣、夾鎢、夾焊條葯皮等)。
4,未熔合 和 未焊透。
5,形狀缺陷(焊縫寬窄不一、角焊縫變化太大、焊縫高低變化太大)。
6,其他缺陷(電弧擦傷 焊接飛濺)。
❷ 鋼結構焊接檢驗中屬於焊接接頭內部缺陷的是( )。
正確答案為:A選項
答案解析:
焊接的接頭質量檢驗是一種專門檢驗。它包括外觀和回內在質量缺陷的確認答,外觀質量包括焊縫成型的幾何尺寸和外觀方面的內容,可以通過肉眼發現,有咬肉(咬邊)、裂紋、氣孔、凹坑、焊瘤等內容;內在質量缺陷主要是指未焊透、內含裂紋和夾渣。選項A屬於焊接接頭的內部形成有焊渣,屬於內部缺陷。氣孔(B)、焊瘤(C)、凹坑(D)都可以由肉眼發現,屬於外部缺陷。當施工中遇到有焊渣的質量問題時,就可以採取針對性的技術措施,解決質量問題,避免盲目性。
❸ 超聲波檢驗焊接,如果焊接內部有缺陷表面沒有能不能檢查出來
能檢查出來。
超聲波抄檢驗是利用材料及其缺陷的聲學性能差異對超聲波傳播波形反射情況和穿透時間的能量變化來檢驗材料內部缺陷的無損檢測方法。
脈沖反射法在垂直探傷時用縱波,在斜射探傷時用橫波。脈沖反射法有縱波探傷和橫波探傷。在超聲波儀器示波屏上,以橫坐標代表聲波的傳播時間,以縱坐標表示回波信號幅度。對於同一均勻介質,脈沖波的傳播時間與聲程成正比。因此可由缺陷回波信號的出現判斷缺陷的存在;又可由回波信號出現的位置來確定缺陷距探測面的距離,實現缺陷定位;通過回波幅度來判斷缺陷的當量大小。
❹ 如何防止管道焊口內部缺陷
管道焊接內部缺陷成因及預防在管道焊接過程中,由於人員、設備、材料、方法、環境等各方面因素影響,在管道焊縫處產生缺陷。管道焊接內部缺陷主要有裂紋、氣孔、夾渣、未焊透、未熔合等。
一、裂紋。
在焊縫或熱影響區內開裂形成的縫隙叫裂紋。分為冷裂紋、熱裂紋、再熱裂紋等。焊接裂
紋危害性很大,它除了降低焊縫強度外,還因裂紋末端存在尖銳的缺口,而引起嚴重的應力集中,造成結構斷裂破壞。
1、冷裂紋:焊縫冷卻過程中,溫度在200℃以下產生的裂紋,叫冷裂紋。由於常在焊後一段時間發生,也叫延遲裂紋。冷裂紋發生在燭焊縫或熱影響區上,在碳鋼或合金鋼中發生較多。
1.1產生原因
焊縫在結晶過程中,氫含量過高不能逸出,聚集在離熔合線附近的熱影響區中;母材的淬硬傾向大,在冷卻速度較快的條件下,熱影響區形成脆而硬的馬氏體組織;焊接過程中由於工件局部不均勻受熱,焊縫在冷卻過程中會產生很大的拉應力,這種拉應力隨焊縫溫度的下降而增大。在氫、淬硬組織、應力三個因素共同作用下,即產生裂紋。
1.2預防措施
1.2.1合理選擇焊材。選用低氫型焊條,減少含氫量,焊前嚴格按規定進行烘乾,焊口邊緣徹底清理干凈,減少氫的來源;選用合適焊材,使焊縫與母材有良好的匹配,增加焊縫金屬的塑性
,不產生任何不良組織,如晶粒粗化及硬脆馬氏體等。
1.2.2選擇合理的焊接工藝。如焊前預熱、控制層間溫度、減緩冷卻速度,使用小電流、分散焊等措施減小焊件的溫度差,改善焊縫及熱影響區的組織狀態等。
1.2.3焊後及時熱處理。使氫能從焊縫中逸出、減少焊接殘余應力及改善接頭的組織和性能。
1.2.4採用合理的焊接順序和焊接方向,改善焊接的應力狀態,降低焊接殘余應力。
1.2.5制定合理的成形加工和組裝工藝,盡可能減小冷卻變形度,避免強制組裝,預防組裝過程中造成各種傷痕。
2、熱裂紋:熱裂紋是在稍低於凝固溫度下產生的裂紋。在300℃以上高溫產生的裂紋都叫熱裂紋。熱裂紋大多產生在焊縫中,有時也出現在熱影響區內。這類裂紋沿晶界開裂,斷面上大多有明顯氧化色彩。
2.1產生原因:熱裂紋是拉應力和低熔點共晶兩者聯合作用形成的裂紋。無論增大那一方面的作用,都可以促使焊縫中形成熱裂紋。
2.2預防措施
2.2.1控制化學成分,限制易生成低熔點共晶物和有害雜質的含量,應減少焊縫金屬中的鎳、碳、硫、磷含量,增加鉻、鉬、硅及錳等元素,可以減少熱裂紋的產生。
2.2.2改善焊縫金屬組織,細化晶粒,減少或分散偏析,降低低熔點共晶物的有害作用。
2.2.3選用適當的焊條葯皮類型。用低氫型葯皮焊條可以使焊縫晶粒細化,減少雜質偏析,
提高抗裂性。用酸性葯皮焊條氧化性強,使合金元素燒損多,抗裂性下降,而且晶粒粗大,使熱裂紋極易產生。
2.2.4控制焊縫形狀,盡量得到焊縫成形系數較大的焊縫。
2.2.5採用多層多道焊法,控制層問溫度,避免偏析物聚集在焊縫中心部位。
2.2.6焊前預熱,減小冷卻速度,降低應力。
2.2.7焊接收弧熔池應填滿,減少弧坑裂紋。
2.2.8選擇合理的焊接順序和焊接方向,減小焊接應力。
2.2.9採用小電流、快焊速來減少焊接熔池過熱、快速冷卻,以減少偏析,使抗裂性提高。
3、再熱裂紋:再熱裂紋是焊後焊件在一定溫度范圍再次加熱,如焊後熱處理或其他加熱過程產生的裂紋。焊後熱處理裂紋發生於焊後應力消除熱處理的加熱過程中。再熱裂紋起源於熱影響的粗晶區和焊根部位,具有晶間斷裂的特徵。
3.1產生原因
3.1.1焊縫再次加熱後,由第一次熱過程所形成的過飽和固熔碳化物再次被析出,即析出沉澱碳化物
造成晶內強化,使滑移應變集中於原奧氏體晶界。當晶界的塑性應變能力不足以承受鬆弛應力過程所產生
的應變時,則產生再熱裂紋。
3.1.2接頭在焊後熱處理中,易使剛脆化的元素集結在晶界上,削弱了晶界的結合力,產生再熱裂紋。
3.2預防措施
3.2.1減小熱影響區的過熱傾向,細化奧氏體晶粒尺寸。 3.2.2選用合適的焊接材料,提高金屬在消除應力熱處理溫度時的塑性,以提高承擔鬆弛應變的能力。
3.2.3提高預熱溫度、焊後採取緩冷,並使焊縫外形均勻平整,以減小焊接殘余應力和應力集中。
3.2.4採用正確的熱處理規范和工藝,盡量不在熱敏感區停留過長。
❺ 焊接時常見的焊縫內部缺陷有哪些
(1)氣孔的分類氣孔從其形狀上分,有球狀氣孔、條蟲狀氣孔;從數量上可分為單個氣孔內和群狀氣容孔。群狀氣孔又有均勻分布氣孔,密集狀氣孔和鏈狀分布氣孔之分。按氣孔內氣體成分分類,有氫氣孔、氮氣孔、二氧化碳氣孔、一氧化碳氣孔、氧氣孔等。熔焊氣孔多為氫氣孔和一氧化碳氣孔。
(2)氣孔的形成機理常溫固態金屬中氣體的溶解度只有高溫液態金屬中氣體溶解度的幾十分之一至幾百分之一,熔池金屬在凝固過程中,有大量的氣體要從金屬中逸出來。當凝固速度大於氣體逸出速度時,就形成氣孔。
(3)產生氣孔的主要原因母材或填充金屬表面有銹、油污等,焊條及焊劑未烘乾會增加氣孔量,因為銹、油污及焊條葯皮、焊劑中的水分在高溫下分解為氣體,增加了高溫金屬中氣體的含量。焊接線能量過小,熔池冷卻速度大,不利於氣體逸出。焊縫金屬脫氧不足也會增加氧氣孔。
(4)氣孔的危害氣孔減少了焊縫的有效截面積,使焊縫疏鬆,從而降低了接頭的強度,降低塑性,還會引起泄漏。氣孔也是引起應力集中的因素。氫氣孔還可能促成冷裂紋。
❻ 焊接常見的缺陷有哪些
(1)氣孔的分類氣孔從其形狀上分,有球狀氣孔、條蟲狀氣孔;從數量上可分為單個氣孔和群內狀氣孔。群狀氣孔又有均勻分容布氣孔,密集狀氣孔和鏈狀分布氣孔之分。按氣孔內氣體成分分類,有氫氣孔、氮氣孔、二氧化碳氣孔、一氧化碳氣孔、氧氣孔等。熔焊氣孔多為氫氣孔和一氧化碳氣孔。
(2)氣孔的形成機理常溫固態金屬中氣體的溶解度只有高溫液態金屬中氣體溶解度的幾十分之一至幾百分之一,熔池金屬在凝固過程中,有大量的氣體要從金屬中逸出來。當凝固速度大於氣體逸出速度時,就形成氣孔。
(3)產生氣孔的主要原因母材或填充金屬表面有銹、油污等,焊條及焊劑未烘乾會增加氣孔量,因為銹、油污及焊條葯皮、焊劑中的水分在高溫下分解為氣體,增加了高溫金屬中氣體的含量。焊接線能量過小,熔池冷卻速度大,不利於氣體逸出。焊縫金屬脫氧不足也會增加氧氣孔。
(4)氣孔的危害氣孔減少了焊縫的有效截面積,使焊縫疏鬆,從而降低了接頭的強度,降低塑性,還會引起泄漏。氣孔也是引起應力集中的因素。氫氣孔還可能促成冷裂紋。
❼ 焊接檢測方法有哪些 激光焊接的質量檢驗
一 外觀檢驗
用肉眼或放大鏡觀察是否有缺陷,如咬邊、燒穿、未焊透及裂紋等,並檢查焊縫外形尺寸是否符合要求.
二 密封性檢驗
容器或壓力容器如鍋爐、管道等要進行焊縫的密封性試驗.密封性試驗有水壓試驗、氣壓試驗和煤油試驗幾種.
1水壓試驗 水壓試驗用來檢查焊縫的密封性,是焊接容器中用得最多的一種密封性檢驗方法.
2氣壓試驗 氣壓試驗比水壓試驗更靈敏迅速,多用於檢查低壓容器及管道的密封性.將壓縮空氣通入容器內,焊縫表面塗抹肥皂水,如果肥皂泡顯現,即為缺陷所在.
3煤油試驗 在焊縫的一面塗抹白色塗料,待乾燥後再在另一面塗煤油,若焊縫中有細微裂紋或穿透性氣孔等缺陷,煤油會滲透過去,在塗料一面呈現明顯油斑,顯現出缺陷位置.
三 焊縫內部缺陷的無損檢測
1 滲透檢驗 滲透檢驗是利用帶有熒光染料或紅色染料的滲透劑的滲透作用,顯示缺陷痕跡的無損檢驗法,常用的有熒光探傷和著色探傷.將擦洗干凈的焊件表面噴塗滲透性良好的紅色著色劑,待滲透到焊縫表面的缺陷內,將焊件表面擦凈.再塗上一層白色顯示液,待乾燥後,滲入到焊件缺陷中的著色劑由於毛細作用被白色顯示劑所吸附,在表面呈現出缺陷的紅色痕跡.滲透檢驗可用於任何錶面光潔的材料.
2 磁粉檢驗 磁粉檢驗是將焊件在強磁場中磁化,使磁力線通過焊縫,遇到焊縫表面或接近表面處的缺陷時,產生漏磁而吸引撒在焊縫表面的磁性氧化鐵粉.根據鐵粉被吸附的痕跡就能判斷缺陷的位置和大小.磁粉檢驗僅適用於檢驗鐵磁性材料表面或近表面處的缺陷.
3 射線檢驗 射線檢驗有X射線和Y射線檢驗兩種.當射線透過被檢驗的焊縫時,如有缺陷,則通過缺陷處的射線衰減程度較小,因此在焊縫背面的底片上感光較強,底片沖洗後,會在缺陷部位顯示出黑色斑點或條紋.X射線照射時間短、速度快,但設備復雜、費用大,穿透能力較Y射線小,被檢測焊件厚度應小於30mm.而Y射線檢驗設備輕便、操作簡單,穿透能力強,能照投300mm的鋼板.透照時不需要電源,野外作業方便.但檢測小於50mm以下焊縫時,靈敏度不高.
4 超聲波檢查 超聲波檢驗是利用超聲波能在金屬內部傳播,並在遇到兩種介質的界面時會發生反射和折射的原理來檢驗焊縫內部缺陷的.當超聲波通過探頭從焊件表面進入內部,遇到缺陷和焊件底面時,發生反射,由探頭接收後在屏幕上顯示出脈沖波形.根據波形即可判斷是否有缺陷和缺陷位置.但不能判斷缺陷的類型和大小.由於探頭與檢測件之間存在反射面,因此超聲波檢查時應在焊件表面塗抹耦合劑.
❽ 為什麼焊接後的環縫RT探傷合格在進行UT檢測時焊縫內部會有大量或是局部密集的橫向裂紋
我先讓你了解一下兩種檢測方法的用途
1、滲透探傷(PT)
當含有顏料或熒光粉劑的滲透液噴灑或塗敷在被檢焊縫表面上時,利用液體的毛細作用,使其滲入表面開口的缺陷中,然後清洗去除表面上多餘的滲透液,乾燥後施加顯像劑,將缺陷中的滲透液吸附到焊縫表面上來,從而觀察到缺陷的顯示痕跡。
液體滲透探傷主要用於:檢查坡口表面、碳弧氣刨清根後或焊縫缺陷清除後的刨槽表面、工卡具鏟除的表面以及不便磁粉探傷部位的表面開口缺陷。
先讓你了解一下兩種檢測方法的用途。
2、超聲波探傷(UT)
利用壓電換能器件,通過瞬間電激發產生脈沖振動,藉助於聲耦合介質傳人金屬中形成超聲波,超聲波在傳播時遇到缺陷就會反射並返回到換能器,再把聲脈沖轉換成電脈沖,測量該信號的幅度及傳播時間就可評定工件中缺陷的位置及嚴重程度。
超聲波比射線探傷靈敏度高,靈活方便,周期短、成本低、效率高、對人體無害,但顯示缺陷不直觀,對缺陷判斷不精確,受探傷人員經驗和技術熟練程度影響較大。
3、從兩種檢測方法的對比來看應該用於,檢查坡口表面、碳弧氣刨清根後或焊縫缺陷清除後的刨槽表面、工卡具鏟除的表面以及不便磁粉探傷部位的表面開口缺陷(PT)。
一個用於檢測工件內部缺陷(UT)是兩種完全不同的檢驗方式。
4、由於(PT)是用於表面檢測的所以內部的焊接缺陷是檢測不出來的。(UT)本身就是檢測內部缺陷所。
5、所以焊接後的環縫RT探傷合格進行UT檢測時焊縫內部會有大量或是局部密集的橫向裂紋。
6、這說明焊縫表面沒有缺陷,而內部存在很大的缺陷。
❾ 焊接結構的內部缺陷有哪些
你好,焊縫結構的內部缺陷有:
未焊透、內部氣孔、內部裂紋、夾渣等。
焊接過程中還是要根據不同的焊接結構去制定對應的焊接工藝,防止缺陷產生的。
望採納,謝謝。
❿ 兩塊6mm厚圓形鋼板,面與面相接,要對周邊縫隙進行焊接,請問如何採用超聲探傷方法檢測內部缺陷、評級
利用材復料及其缺陷的聲學性制能差異對超聲波傳播的影響來檢驗材料內部缺陷的無損檢驗方法。現在廣泛採用的是觀測聲脈沖在材料中反射情況的超聲脈沖反射法,此外還有觀測穿過材料後的入射聲波振幅變化的穿透法等。常用的頻率在0.5~5MHz之間。
常用的檢驗儀器為 A型顯示脈沖反射式超聲波探傷儀。根據儀器示波屏上反射信號的有無、反射信號和入射信號的時間間隔、反射信號的高度,可確定反射面的有無、其所在位置及相對大小。
