焊接模擬是干什麼的
1. ANSYS模擬焊接過程的求助
1、前處理
前處理包括單元定義、材料定義和建模,單元定義是需要注意單元屬性,此次定義13號二維耦合單元,具有溫度和位移自由度。
材料屬性包括結構參數和熱參數,具體包含彈性模量,泊松比,屈服強度,塑性屬性,材料密度,熱膨脹系數,熱傳導系數,比熱容。焊接時溫度較高,定義材料通常需要定義多個溫度下的值。例如定義各材料在各溫度點下的屈服應力和屈服後的彈性模量:
tb,bkin,1,5
tbtemp,20,1
tbdata,1,1200e6,0.193e11
tbtemp,500,2
tbdata,1, 933e6,0.150e11
tbtemp,1000,3
tbdata,1, 435e6,0.070e11
tbtemp,1500,4
tbdata,1, 70e6,0.010e11
tbtemp,2000,5
tbdata,1, 7e6,0.001e11
建立的二維模型,中間三角區域為焊接區域。
2、單元排序
焊接區域的單元排序是一個必要的過程,只有將單元按照坐標順序排列好,激活才好控制。
由於焊接時單元是從底部一層一層鋪,因此需要將三角區域的單元按照Y坐標排序。單元的坐標是其形心處的坐標,如果一層的單元Y坐標一致,則將這一層再按照X坐標排序。
排序用ANSYS的APDL實現,通過Do循環一遍一遍的遍歷單元。
在進行這個過程之前,需要先選出焊接區域的所有單元,之後:
*get,nse,elem,,count !焊接區域單元數目nse
*dim,ne,,nse !定義數組,存儲單元編號
*dim,nex,,nse !定義數組,存儲坐標x
*dim,ney,,nse !定義數組,存儲坐標y
*dim,neorder,,nse !定義數組,存儲按照坐標排序的單元標號
mine=0
!**************************************************************
*do,i1,1,nse
esel,u,elem,,mine !提出排序了的單元
*get,nse1,elem,,count !得到剩下的單元數目nse1
ii=0
*do,i,1,emax
*if,esel(i),eq,1,then !表示單元是否被選中
ii=ii+1
ne(ii)=i
*endif
*enddo !此段循環用於得到剩下的單元的編號
*do,i,1,nse1
*get,ney(i),elem,ne(i),cent,y
*get,nex(i),elem,ne(i),cent,x
*enddo !此段循環得到剩下單元的坐標
miny=1e20
minx=1e20 !定義輔助常數,用於比較
*do,i,1,nse1
*if,ney(i),lt,miny,then
miny=ney(i)
minx=nex(i)
mine=ne(i)
*else
*if,ney(i),eq,miny,then
*if,nex(i),lt,minx,then
miny=ney(i)
minx=nex(i)
mine=ne(i)
*endif
*endif
*endif
*enddo !此段循環用於將剩下的單元經過坐標比較,找到Y最小(X最小的單元編號)
neorder(i1)=mine !得到這個編號的單元並存儲
*enddo
注意循環的時候會有警告,這個沒有關系,因為第一步剔除單元操作時實際並沒有剔除成功,因為第一步循環時mine=0。
4 載入求解
溫度載荷,結構約束,無需多說。
焊接一個單元的時間假設為5s,起始時間為0,通過得到的單元數可以知道整個歷程的時間。
求解之前先將所有焊接區域的單元殺死,通過循環遍歷實現,命令是ekill,每次殺死一個單元:
*do,i,1,nse
ekill,neorder(i)
esel,s,live
eplot
*enddo
求解過程的APDL為:
*do,i,1,nse
ealive,neorder(i)
esel,s,live
eplot
esel,all
!******下面的求解用於建立溫度的初始條件******
t=t+dt1
time,t
nsubst,1
*do,j,1,4
d,nelem(neorder(i),j),temp,max_tem
*enddo
solve
!****下面的求解用於保證初始的升溫速度為零****
t=t+dt1
time,t
solve
!*********下面的步驟用於求解溫度分布**********
*do,j,1,4
ddele,nelem(neorder(i),j),temp
*enddo
t=t+dt-2*dt1
time,t
nsubst,nsub1
solve
*enddo
t=t+50000
求解完之後,繼續求解冷卻過程,冷卻過程只需給一個時間就行。
5 計算結果
最後的應力分布如圖6,因為在左端施加位移約束,最後由於焊接變形,右邊發生翹曲。
2. 現需要用ANSYS模擬零件焊接過程,如何入手
這個要看ansys結構分析以及熱學分析的東西,然後主要是熱應力的分析,難點是網格的建立與熱源的建立,學習方法看幫助文檔,教材中文的隨便什麼結構,熱學的書都可以,其次是軟體自帶的英文幫助文檔
3. 做焊接模擬,什麼軟體好
看模擬對象是什麼了,一般溫度和應力模擬Ansys和Marc用的比較多
4. 模擬焊後熱處理的目的
焊前預熱和後熱是為了降低焊縫的冷卻速度,防止接頭生成淬硬組織,產回生冷裂紋答。焊前預熱溫度一般在100-200度,
後熱不屬於熱處理,也是一種緩冷措施,後熱的溫度在200-300度,有的單純是為了緩冷,有的是針對消氫處理的,一定的後熱溫度,能使焊縫中氫擴散出來,不至於集聚導致裂紋。後熱保溫時間要根據工件厚度來確定,一般不會低於0.5小時的。
焊後熱處理的就多了,主要分為四種:
1低於下轉變溫度進行的焊後熱處理,如消除應力退火,溫度一般在600-700之間,主要目的是消除焊接殘余應力,
2高於上轉變溫度進行的焊後熱處理,如正火,溫度在950-1150之間,細化晶粒,改善材料的力學性能,再如不銹鋼的固熔、穩定化處理,溫度在1050左右,提高不銹鋼的耐蝕性能。尤其是抗晶間腐蝕的能力。再如淬火,不同的淬火工藝能得到不同的效果,提高鋼的耐磨性,硬度等。
3先高於上轉變溫度進行處理再進行低於下轉變溫度下的熱處理。比如正火加回火,淬火加回火等。
4在上下轉變溫度之間進行的焊後熱處理。750-900之間,一些材料的實效強化重結晶退火等。
想詳細的了解,建議找些書看看。不好講的太詳細。
錯誤之處,大家多多批評!謝謝!
5. 高分求助abaqus焊接模擬方面教程
類似的教程很多,但是絕大多數都是英文。需要你有一定的英文基礎。
下面是一個簡單的例子,你可以先練習試試看。
1.3.18 Inertia welding simulation using Abaqus/Standard and Abaqus/CAE
Procts: Abaqus/Standard Abaqus/CAE
Objectives
This example demonstrates the following Abaqus features:thermal-mechanical coupling for inertia welding simulation,semi-automatic remeshing using Python scripting and output database scripting methods for extracting deformed configurations,defining a complex friction law in a user subroutine,flywheel loading through user subroutine definitions, andcombining and presenting results from a sequence of output database (.odb) files.
Application description
This example examines the inertia friction welding process of the pipes shown in Figure 1.3.18–1. The specific arrangement considered is the resulting as-welded configuration shown in Figure 1.3.18–2.
In this weld process kinetic energy is converted rapidly to thermal
energy at a frictional interface. The resulting rapid rise in interface
temperature is exploited to proce high-quality welds. In this example
the weld process is simulated, and the initial temperature rise and
material plastic flow are observed. An important factor in the process
design is control of the initial speed of the flywheel so that, when the
flywheel stops, the temperature rises to just below the melting point,
which in turn results in significant flow of material in the region of
the weld joint. Understanding the friction, material properties, and
heat transfer environment are important design aspects in an effective
inertia welding process; therefore, simulation is a helpful tool in the
process design.Geometry
The weld process in this example is shown in Figure 1.3.18–1,
where two pipes are positioned for girth-weld joining. The two pipes
are identical, each with a length of 21.0 mm, an inside radius of
42.0 mm, and an outside radius of 48.0 mm. The pipes are adjacent,
touching each other initially at the intended weld interface.Materials
The pipes are made of Astroloy, a high-strength alloy used in gas turbine components. Figure 1.3.18–3
shows flow stress curves as a function of temperature and plastic
strain rate. At temperatures relevant to the welding process, the
material is highly sensitive to plastic strain rate and temperature.
Specific heat is a function of temperature, as shown in Figure 1.3.18–4.Other material properties are defined as follows:Young's molus:180,000 MPaPoisson's ratio:0.3Density:7.8 × 10–9 Mg/mm3Conctivity:14.7 W/m/C at 20C 28 W/m/C at 1200C
Initial conditions
The pipes are initially set at 20°C, representing room temperature. Boundary conditions and loading
A
pressure of 360 MPa is applied to the top surface of the upper pipe.
The initial rotational velocity of the flywheel is set at 48.17 rad/s,
or 7.7 revolutions per second. The mass moment of inertia of the
flywheel is 102,000 Mg mm2. Interactions
The
principal interaction occurs at the weld interface between the pipes;
however, a secondary concern is the possibility of contact of weld flash
with the side of the pipes. The weld-interface friction behavior is
assumed to follow that described by Moal and Massoni (1995), where the
ratio of shear stress to the prescribed pressure is observed to be a
complex function of interface slip rate. The heat generation from the
frictional sliding, combined with plastic deformation, contributes to
the temperature rise in the pipes.
Abaqus modeling approaches and simulation techniques
Abaqus/CAE
and Abaqus/Standard are used together to affect the weld simulation in a
way that permits extreme deformation of the pipes in the weld region.
This process is automated through the use of Python scripts. Three cases
are studied in this example.Summary of analysis casesCase 1Initial flywheel velocity = 48.17 rad/s. This case proces a successful weld.Case 2Initial
flywheel velocity = 20.0 rad/s. This case illustrates an unsuccessful
weld scenario; the flywheel has insufficient energy to begin the weld
process.Case 3Initial flywheel velocity =
70.0 rad/s. This case illustrates an unsuccessful weld scenario; the
flywheel has excessive energy, resulting in a temperature rise into the
liquis regime of the pipe material.The
following sections discuss analysis considerations that are applicable
to all the cases. Python scripts that generate the model databases and
Abaqus/Standard input files are provided for Case 1, with instructions
in the scripts for executing the Case 2 and Case 3 simulations.Analysis types
The
analysis is nonlinear, quasi-static with thermal-mechanical coupling. A
fully coupled temperature-displacement procere is used.Analysis techniques
The
key feature required for successful simulation of this process is
remeshing. In this example, because of the large deformation near the
weld region, multiple analyses are employed to limit element distortion.
These analyses are executed in sequence, with remeshing performed
between executions, and are automated through the use of Python scripts.
At each remesh point the current model configuration represents a
significant change in the pipes' shape and in the current analysis
mesh. Abaqus/CAE is used to extract the outer surface of the pipes,
reseed the surface, and remesh the pipe regions. This process employs
the Abaqus Scripting Interface PartFromOdb command, which is used to extract orphan mesh parts representing the deformed pipes. These parts are then passed to the Part2DGeomFrom2DMesh command. This command creates a geometric Part
object from the orphan mesh imported earlier. Once the profile of the
deformed part has been created, options in the Mesh mole are used to
remesh the part. The new mesh results in a new Abaqus/Standard analysis,
and the map solution procere maps state variables from the previous
analysis (see 「Mesh-to-mesh solution mapping,」 Section 12.4.1 of the Abaqus Analysis User's Manual).Mesh design
The
pipes are modeled as axisymmetric. The element formulation used is the
fully coupled temperature-displacement axisymmetric elements with twist
degrees of freedom (element types CGAX4HT and CGAX3HT), where the twist
degree of freedom enables modeling of rotation and shear deformation in
the out-of-plane direction. The hybrid formulation is required to handle
the incompressible nature of the material ring the plastic flow. The
mesh is divided into two regions for each pipe. In the region near the
weld interface, smaller elements are created (see Figure 1.3.18–5).
During the remeshing process, the region near the weld surface is
recalculated so that the new flash region is also meshed with smaller
elements (see Figure 1.3.18–6).Material model
The
material model defined for this example approximates the
high-temperature behavior of Astroloy, where it is reported by Soucail
et al. (1992) using a Norton-Hoff constitutive law to describe the
temperature and strain-rate viscoplastic behavior. A similar model is
defined in Abaqus as a rate-dependent perfectly plastic material model.
For the loading in this model, these material parameters result in the
onset of local plastic flow only after the interface temperature has
exceeded roughly 1200C, near the material solis temperature of
1250C. Above this temperature the Mises flow stress is highly sensitive
to variations in temperature and strain rate. A special adjustment in
the flow stress at high strain rates is necessary to avoid divergence
ring the iteration procere of the nonlinear solution. In the
material model definition an extreme case of stress data is defined when
the strain rate is 1.0 × 106 s–1. Stress data when the strain rate equals zero are also defined to be the same as the stress data at strain rate 1.0 × 10–5 s–1. As a result of large deformation, thermal expansion is not considered in the material model. It
is assumed that 90% of the inelastic deformation energy contributes to
the internal heat generation, which is the Abaqus default for inelastic
heat fraction.Initial conditions
6. 做焊接模擬動畫的是什麼軟體
或sysweld軟體火Proe
7. 焊接熱模擬主要哪個方向
焊接熱模擬主要是模擬焊接傳熱過程中的溫度(場)分布,用以研究在採用不同焊接熱源的條件下,溫度的變化對焊接過程的影響。
8. ansys焊接模擬分析一般用什麼單元類型
看你模擬什麼焊接 如果是點焊的話 一般用二維模型就可以了 單元內類型有很多種的 有的是適合容二維的 有的適合三維的 模擬激光焊深熔焊時 需考慮厚度方向的熱傳導 這時你就必須採用三維單元 如solid45/70單元
9. 做焊接模擬一般用什麼軟體
安思ANSYS,和SYWELD等