焊接時組織怎麼變化
⑴ 關於焊接的各種形式問題
1、焊條電弧焊:
原理——用手工操作焊條進行焊接的電弧焊方法。利用焊條與焊件之間建立起來的穩定燃燒的電弧,使焊條和焊件熔化,從而獲得牢固的焊接接頭。屬氣-渣聯合保護。
主要特點——操作靈活;待焊接頭裝配要求低;可焊金屬材料廣;焊接生產率低;焊縫質量依賴性強(依賴於焊工的操作技能及現場發揮)。
應用——廣泛用於造船、鍋爐及壓力容器、機械製造、建築結構、化工設備等製造維修行業中。適用於(上述行業中)各種金屬材料、各種厚度、各種結構形狀的焊接。
2、埋弧焊(自動焊):
原理——電弧在焊劑層下燃燒。利用焊絲和焊件之間燃燒的電弧產生的熱量,熔化焊絲、焊劑和母材(焊件)而形成焊縫。屬渣保護。
主要特點——焊接生產率高;焊縫質量好;焊接成本低;勞動條件好;難以在空間位置施焊;對焊件裝配質量要求高;不適合焊接薄板(焊接電流小於100A時,電弧穩定性不好)和短焊縫。
應用——廣泛用於造船、鍋爐、橋梁、起重機械及冶金機械製造業中。凡是焊縫可以保持在水平位置或傾斜角不大的焊件,均可用埋弧焊。板厚需大於5毫米(防燒穿)。焊接碳素結構鋼、低合金結構鋼、不銹鋼、耐熱鋼、復合鋼材等。
3、二氧化碳氣體保護焊(自動或半自動焊):
原理:利用二氧化碳作為保護氣體的熔化極電弧焊方法。屬氣保護。
主要特點——焊接生產率高;焊接成本低;焊接變形小(電弧加熱集中);焊接質量高;操作簡單;飛濺率大;很難用交流電源焊接;抗風能力差;不能焊接易氧化的有色金色。
應用——主要焊接低碳鋼及低合金鋼。適於各種厚度。廣泛用於汽車製造、機車和車輛製造、化工機械、農業機械、礦山機械等部門。
4、MIG/MAG焊(熔化極惰性氣體保護焊):
原理——採用惰性氣體作為保護氣,使用焊絲作為熔化電極的一種電弧焊方法。
保護氣通常是氬氣或氦氣或它們的混合氣。MIG用惰性氣體,MAG在惰性氣體中加入少量活性氣體,如氧氣、二氧化碳氣等。
主要特點——焊接質量好;焊接生產率高;無脫氧去氫反應(易形成焊接缺陷,對焊接材料表面清理要求特別嚴格);抗風能力差;焊接設備復雜。
應用——幾乎能焊所有的金屬材料,主要用於有色金屬及其合金,不銹鋼及某些合金鋼(太貴)的焊接。最薄厚度約為1毫米,大厚度基本不受限制。
5、TIG焊(鎢極惰性氣體保護焊)
原理——在惰性氣體保護下,利用鎢極與焊件間產生的電弧熱熔化母材和填充焊絲(也可不加填充焊絲),形成焊縫的焊接方法。
主要特點——適應能力強(電弧穩定,不會產生飛濺);焊接生產率低(鎢極承載電流能力較差(防鎢極熔化和蒸發,防焊縫夾鎢));生產成本較高。
應用——幾乎可焊所有金屬材料,常用於不銹鋼,高溫合金,鋁、鎂、鈦及其合金,難熔活潑金屬(鋯、鉭、鉬、鈮等)和異鍾金屬的焊接。焊接厚度一般在6毫米以下的焊件,或厚件的打底焊。
6、等離子弧焊
原理——藉助水冷噴嘴對電弧的拘束作用,獲得高能量密度的 等離子弧進行焊接的方法。
主要特點(與氬弧焊比)——(1)能量集中、溫度高,對大多數金屬在一定厚度范圍內都能獲得小孔效應,可以得到充分熔透、反面成形均勻的焊縫。(2)電弧挺度好,等離子弧基本是圓柱形,弧長變化對焊件上的加熱面積和電流密度影響比較小。所以,等離子弧焊的弧長變化對焊縫成形的影響不明顯。(3)焊接速度比氬弧焊快。(4)能夠焊接更細、更薄加工件。(4)設備復雜,費用較高。
應用——
(1)穿透型(小孔型)等離子弧焊:利用等離子弧直徑小、溫度高、能量密度大、穿透力強的特點,在適當的工藝參數條件下(較大的焊接電流100A~500A),將焊件完全熔透,並在等離子流力作用下,形成一個穿透焊件的小孔,並從焊件的背面噴出部分等離子弧的等離子弧焊接方法。可單面焊雙面成形,最適於焊接3~8毫米不銹鋼,12毫米以下鈦合金,2~6毫米低碳鋼或低合金結構鋼以及銅、黃銅、鎳及鎳合金的對接焊。(板太厚,受等離子弧能量密度的限制,形成小孔困難;板太薄,小孔不能被液態金屬完全封閉,固不能實現小孔焊接法。)
(2)熔透型(溶入型)等離子弧焊:採用較小的焊接電流(30A~100A)和較低的等離子氣體流量,採用混合型等離子弧焊接的方法。不形成小孔效應。主要用於薄板(0.5~2.5毫米以下)的焊接、多層焊封底焊道以後各層的焊接及角焊縫的焊接。
(3)微束等離子弧:焊接電流在30A以下的等離子弧焊。噴嘴直徑很小(Φ0.5~Φ1.5毫米),得到針狀細小的等離子弧。主要用於焊接1毫米以下的超薄、超小、精密的焊件。
註:
1、以上是常用的幾種熔焊方法,各有優點和不足,選擇焊接方法時,要考慮的因素比較多,如:焊件材料的種類、板厚、焊縫在空間的位置等。選焊接方法的原則是:在保證焊接接頭質量的前提下,用總成本低的焊接方法。
2、推薦一本書:高職高專規劃教材《焊接方法與設備》,機械工業出版社,雷世明主編。內容較全但不難。
⑵ 焊接低碳鋼時,熱影響區的組織和性能的變化
焊接區會出現貧鉻現象和應力使焊縫容易出現晶間腐蝕和斷裂這就是所謂的γ+δ雙向性所以焊接時應選具有γ+δ雙向組織的焊材
⑶ 焊接熱循環對焊接接頭組織的影響。(字數 越多越好 越詳細越好 )
焊接熱循環指焊接過程中,焊件上某點溫度由低到高、再由高到低的過程,主版要包括溫度上升速權度及上升時間、最高溫度、高溫保持時間、溫度下降速度及下降時間等幾個基本參數。
焊接接頭組織因材料不同而不同,對於大多數低碳鋼而言,其組織為F+P。組織不同,其力學性能等也就有差異。
一般情況下,焊接熱循環對焊縫施加熱影響,勢必會影響到接頭晶粒大小,從而對接頭性能產生影響。但是,熱循環不會影響到接頭組織的改變。組織成分的改變主要取決於母材及焊材等
⑷ 焊接時的組織是共晶亞共晶還是過共晶
那要看你來焊接的是什麼鋼源材,碳的質量分數在2.11-6.69%范圍內的鐵碳合金均會發生共晶轉變,在此范圍內4.3%為共晶白口鑄鐵,組織為萊氏體,小於4.3%為亞共晶白口鑄鐵,組織為珠光體、二次滲碳體和萊氏體,大於4.3%為過共晶白口鑄鐵,組織為一次滲碳體和萊氏體。
⑸ 焊接過程中,第二道焊會對第一道焊產生怎樣影響
第二層對第一層起退火作用,即通常稱為回火焊道或退火焊道,回火焊接肯定會造成焊回道晶答粒細化,熱影響區晶粒粗大的現象,熱影響區的硬度偏高
焊接簡介
焊接:也稱作熔接、鎔接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。 焊接通過下列三種途徑達成接合的目的:
1,、加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助
2、單獨加熱熔點較低的焊料,無需熔化工件本身,借焊料的毛細作用連接工件(如軟釺焊、硬焊)
3、在相當於或低於工件熔點的溫度下輔以高壓、疊合擠塑或振動等使兩工件間相互滲透接合(如鍛焊、固態焊接)
依具體的焊接工藝,焊接可細分為氣焊、電阻焊、電弧焊、感應焊接及激光焊接等其他特殊焊接。
焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。
⑹ 焊接加熱和冷卻時熱影響區的組織轉變特點分別是什麼
焊接加熱的時候主要是讓一些材料變得軟化這樣有利於焊接冷卻的時候是為了讓材料變得緊固
⑺ 珠光體剛焊接接頭組織性能是什麼
珠光體剛焊接接頭組織性能:
珠光體鋼焊接接頭分為焊縫區、熔合區和熱影響區三個主要特徵區。採用奧氏體鋼焊條時,焊縫組織為奧氏體加少量的骨架狀鐵素體。熔合區為針狀組織和不易被腐蝕出來的「白亮」帶;靠近熔合區為具有粗大組織的熱影響區。顯微硬度測試表明:熔合區為一個高硬度區。
珠光體鋼焊縫金屬的稀釋程度受焊接方法、接頭形式、焊接工藝參數(焊接電流、焊接速度)、預熱溫度、焊工操作技術等因素影響。由於稀釋、電弧對流和機械攪拌等作用,焊縫金屬是奧氏體鋼焊條與珠光體母材的均勻混合區。不同的坡口形式和焊接工藝,母材對填充金屬的稀釋程度也不一樣。
焊接金屬的化學成分可以根據填充金屬、母材成分和熔合比來計算。焊縫組織可以根據舍夫勒焊縫組織圖預測。實際上,焊縫中間部位與焊縫邊緣的化學成分有很大的差別,熔池邊緣靠近固態母材處,液態金屬的溫度較低、流動性差,液態停留時間較短,受到機械攪拌作用比較弱,是一個滯留層。該處熔化的母材與填充金屬不能充分地混合,而且越靠近熔合區,母材成分所佔比例越大。
珠光體鋼焊縫中Cr、Ni元素向熔化的母材中擴散,以及母材中碳元素由於受Cr的親和作用向焊縫中擴散,最終形成一個合金元素濃度梯度。
20號鋼與Cr25Ni20(A402)熔合區附近,合金元素的成分分布。因焊縫中的Cr、Ni含量較高,達到了Schaffler焊縫組織圖中單相奧氏體要求的含量,使得奧氏體組織融合過渡區中的Cr、Ni不足以形成單相奧氏體,快速冷卻時可能形成脆性馬氏體組織。
Cr5Mo鋼與Cr25-Ni13(A302)熔合區附近合金元素的成分分布。這種合金元素濃度的變化必然引起組織變化,形成一個稱為熔合區的過渡區。該過渡區雖然很窄,但對焊接接頭的力學性能有重要影響。
奧氏體焊縫與低碳鋼焊接熔合區兩側在焊態及經過高溫加熱處理後C、Cr元素的電子探針分子結果。顯然,經過6000℃×100h高溫加熱處理後,在焊接熔合區靠近焊縫金屬一側的碳含量顯著增加,使熔合區附近的組織性能發生明顯變化,尤其是沖擊性降低。
Cr是強碳化物形成元素,碳原子沿著激活能較低的晶體邊緣由焊縫擴散遷移到熔合區後,有C元素形成穩定的碳化合物Cr23C6。由於熔合區的碳化物溶解和隨後向焊縫空隙擴散進行的較慢,從而形成明顯的脫碳層。提高焊縫中的鉻含量或鐵素體化元素的含量將促使脫碳層的寬度增加。
Ni是奧氏體化元素,會增大碳的活度系數,降低碳化物的化學穩定性,並消弱碳化物形成元素對碳的結合能力。熔合過渡區的寬度主要受焊接工藝和填充金屬中化學成分的影響,如採用大電流和高Ni含量的焊條就能夠減小熔合區的寬度,特別是馬氏體層的寬度。
珠光體鋼的異質接頭在425℃以下工作時,採用25-13型填充金屬焊接的接頭性能良好;在425℃以上工作時,熔合區靠近珠光體易側產生脆性帶,導致接頭沿熔合線斷裂,所以當珠光體鋼與奧氏體鋼的異質接頭在425℃以上或在溫度、壓力變化較大的環境下工作時,要採用鎳含量大於25%的填充金屬(如A507),甚至採用純Ni基填充金屬,將熔合區的低塑性帶的寬度降低至最小,保證接頭的強度和耐蝕性能。
⑻ 焊接熱影響區可以 分為哪三個區其組織性能各如何
焊接熱影響區:簡稱HAZ(heat
affect
zone
)在焊接熱循環作用下,焊縫兩側處於固態的母材發生明顯的組織和性能變化的區域,稱為焊接熱影響區。
一、不易淬火鋼的組織分布
特點:焊接空冷條件下不易形成馬氏體。如低碳鋼,16Mn,15MnV和15MnTi等。
按加熱溫度和組織特徵可劃分為過熱區、正火區、部分正火區和再結晶區四個區域。如圖所示。
1、過熱區(粗晶區)
溫度在固相線至1100℃之間,寬度約1~3mm。焊接時,該區域內奧氏體晶粒嚴重長大,冷卻後得到晶粒粗大的過熱組織,塑性和韌度明顯下降。
2、相變重結晶區(正火區或細晶區)
溫度在1100℃~Ac3之間,寬度約1.2~4.0mm。焊後空冷使該區內的金屬相當於進行了正火處理,故其組織為均勻而細小的鐵素體和珠光體,力學性能優於母材。
3、不完全重結晶區(也稱部分正火區)
加熱溫度在Ac3~Ac1之間。焊接時,只有部分組織轉變為奧氏體;冷卻後獲得細小的鐵素體和珠光體,其餘部分仍為原始組織,因此晶粒大小不均勻,力學性能也較差。
4、再結晶區
如果母材焊前經過冷加工變形,溫度在Ac1~450℃之間,還有再結晶區
。該區域金屬的力學性能變化不大,只是塑性有所增加。如果焊前未經冷塑性變形,則熱影響區中就沒有再結晶區。
二、易淬火鋼的組織分布
特點:空冷下容易淬火形成馬氏體。如18MnMoNb、30CrMnSi等。
1、完全淬火區
焊接時熱影響區處於AC3以上的區域,由於這類鋼的淬硬傾向較大,故焊後得到淬火組織(馬氏體)。在靠近焊縫附近(相當於低碳鋼的過熱區),由於晶粒嚴重長大,故得到粗大的馬氏體,而相當於正火區的部位得到細小的馬氏體。根據冷卻速度和線能量的不同,還可能出現貝氏體,從而形成了與馬氏體共存的混合組織。這個區在組織特徵上都是屬同一類型(馬氏體),只是粗細不同,因此統稱為完全淬火區。
2、不完全淬火區
母材被加熱到AC1~
AC3溫度之間的熱影響區,在快速加熱條件下,鐵素體很少溶入奧氏體,而珠光體、貝氏體、索氏體等轉變為奧氏體。在隨後快冷時,奧氏體轉變為馬氏體。原鐵素體保持不變,並有不同程度的長大,最後形成馬氏體-鐵素體的組織,故稱不完全淬火區。如含碳量和合金元素含量不高或冷卻速度較小時,也可能出現索氏體和體素體。
如果母材在焊前是調質狀態,那麼焊接熱影區的組織,除在上述的完全淬火和不完全淬火區之外,還可能發生不同程度的回火處理,稱為回火區(低於AC1
以下的區域)。
在焊接快速加熱和連續冷卻的條件下,相轉變屬於非平衡轉變,焊接熱影響區常見的組織有鐵素體、珠光體、魏氏組織、上貝氏體、下貝氏體、粒狀貝氏體、低碳馬氏體、高碳馬氏體及
M-A
組元等。
在一定條件下,熱影響區出現哪幾種組織主要與母材的化學成分和焊接工藝條件有關,母材的化學成分是決定熱影響區組織的主要因素
⑼ 為什麼焊接過程中會產生應力和變形
1、原因:焊件變形是指在焊接過程中,由於對焊件局部加熱與冷卻作用,使熔填金屬與母材附回近產生熱應變,這答種熱應變在焊道冷卻時會產生收縮應力,因而使焊件產生彎曲,扭曲或扭轉等現象,稱之為變形。由上述可知,變形是焊接施工過程中,由於熱脹與冷縮作用之結果所造成,因此也可說溫度是造成變形的主要因素。
2、焊接:也稱作熔接、鎔接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。