cdal你如何焊接
A. 鋁材有幾種焊接方法如何焊接
鋁材焊接方法:
1、氣焊和焊條電弧焊方法,設備簡單、操作方便。
氣焊可用於對版焊接質量權要求不高的鋁薄板及鑄件的補焊。
2、焊條電弧焊可用於鋁合金鑄件的補焊。
3、惰性氣體保護焊(TIG或MIG)方法是應用最廣泛的鋁及鋁合金焊接方法。
4、鋁及鋁合金薄板可採用鎢極交流氬弧焊或鎢極脈沖氬弧焊。
5、鋁及鋁合金厚板可採用鎢極氦弧焊、氬氦混合鎢極氣體保護焊、熔化極氣體保護焊、脈沖熔化極氣體保護焊。
幾乎各種焊接方法都可以用於焊接鋁及鋁合金,但是鋁及鋁合金對各種焊接方法的適應性不同,各種焊接方法有其各自的應用場合。

拓展資料
保護措施
1、焊前用機械或化學方法清除工件坡口及周圍部分和焊絲表面的氧化物;
2、焊接過程中要採用合格的保護氣體進行保護;
3、在氣焊時,採用熔劑,在焊接過程中不斷用焊絲挑破熔池表面的氧化膜。
B. 鋁合金焊接有哪幾種方法
不知道你是什麼產品,板厚、接頭形式、鋁合金牌號,
一般短焊縫常用交流TIG(鎢極氬弧焊)就可內以,鋁合金焊後打磨就沒有焊縫痕跡了,
長焊縫MIG(熔化極氬弧焊)效率高,焊絲選用需根據你的母材型號來選擇,一容般常用
的有純鋁、鋁硅。鋁鎂三種焊絲。
如果對成形和焊縫質量要求高的話建議選用交流TIG。設備便宜、成形美觀、質量好。
C. 如何把鋁合金零件焊接在一起
鋁合金焊接的幾種先進工藝:攪拌摩擦焊、激光焊、激光- 電弧復合焊、電子束焊。針對於焊接性不好和曾認為不可焊接的合金提出了有效的解決方法,幾種工藝均具有優越性,並可對厚板鋁合金進行焊接。
關鍵詞: 鋁合金 攪拌摩擦焊 激光焊 激光- 電弧復合焊 電子束焊
1 鋁合金焊接的特點
鋁合金由於重量輕、比強度高、耐腐蝕性能好、無磁性、成形性好及低溫性能好等特點而被廣泛地應用於各種焊接結構產品中,採用鋁合金代替鋼板材料焊接,結構重量可減輕50 %以上。
鋁合金焊接有幾大難點:
①鋁合金焊接接頭軟化嚴重,強度系數低,這也是阻礙鋁合金應用的最大障礙;
②鋁合金錶面易產生難熔的氧化膜(Al2O3 其熔點為2060 ℃) ,這就需要採用大功率密度的焊接工藝;
③鋁合金焊接容易產生氣孔;
④鋁合金焊接易產生熱裂紋;
⑤線膨脹系數大,易產生焊接變形;
⑥鋁合金熱導率大(約為鋼的4 倍) ,相同焊接速度下,熱輸入要比焊接鋼材大2~4 倍。
因此,鋁合金的焊接要求採用能量密度大、焊接熱輸入小、焊接速度高的高效焊接方法。
2 鋁合金的先進焊接工藝
針對鋁合金焊接的難點,近些年來提出了幾種新工藝,在交通、航天、航空等行業得到了一定應用,幾種新工藝可以很好地解決鋁合金焊接的難點,焊後接頭性能良好,並可以對以前焊接性不好或不可焊的鋁合金進行焊接。
2. 1 鋁合金的攪拌摩擦焊接
攪拌摩擦焊FSW( Friction Stir Welding) 是由英國焊接研究所TWI ( The Welding Institute) 1991 年提出的新的固態塑性連接工藝[1~2 ] 。圖1為攪拌摩擦焊接示意圖[3 ] 。其工作原理是用一種特殊形式的攪拌頭插入工件待焊部位,通過攪拌頭高速旋轉與工件間的攪拌摩擦,摩擦產生熱使該部位金屬處於熱塑性狀態,並在攪拌頭的壓力作用下從其前端向後部塑性流動,從而使焊件壓焊在一起。圖2 為攪拌摩擦焊接過程[4 ] 。由於攪拌摩擦焊過程中不存在金屬的熔化,是一種固態連接過程,故焊接時不存在熔焊的各種缺陷,可以焊接用熔焊方法難以焊接的有色金屬材料,如鋁及高強鋁合金、銅合金、鈦合金以及異種材料、復合材料焊接等。目前攪拌摩擦焊在鋁合金的焊接方面研究應用較多。已經成功地進行了攪拌摩擦焊接的鋁合金包括2000 系列(Al- Cu) 、5000 系列(Al - Mg) 、6000 系列(Al - Mg - Si) 、7000 系列(Al - Zn) 、8000 系列(Al - Li) 等。國外已經.進入工業化生產階段,在挪威已經應用此技術焊接快艇上長為20 m 的結構件,美國洛克希德·馬丁航空航天公司用該項技術焊接了鋁合金儲存液氧的低溫容器火箭結構件。
鋁合金攪拌摩擦焊焊縫是經過塑性變形和動態再結晶而形成,焊縫區晶粒細化,無熔焊的樹枝晶,組織細密,熱影響區較熔化焊時窄,無合金元素燒損、裂紋和氣孔等缺陷,綜合性能良好。與傳統熔焊方法相比,它無飛濺、煙塵,不需要添加焊絲和保護氣體,接頭性能良好。由於是固相焊接工藝,加熱溫度低,焊接熱影響區顯微組織變化小,如亞穩定相基本保持不變,這對於熱處理強化鋁合金及沉澱強化鋁合金非常有利。焊後的殘余應力和變形非常小,對於薄板鋁合金焊後基本不變形。與普通摩擦焊相比,它可不受軸類零件的限制,可焊接直焊縫、角焊縫。傳統焊接工藝焊接鋁合金要求對表面進行去除氧化膜,並在48 h 內進行加工,而攪拌摩擦焊工藝只要在焊前去除油污即可,並對裝配要求不高。並且攪拌摩擦焊比熔化焊節省能源、污染小。
攪拌摩擦焊鋁合金也存在一定的缺點:
①鋁合金攪拌摩擦焊接時速度低於熔化焊;
②焊件夾持要求高,焊接過程中對焊件要求加一定的壓力,反面要求有墊板;
③焊後端頭形成一個攪拌頭殘留的孔洞,一般需要補焊上或機械切除;
④攪拌頭適應性差,不同厚度鋁合金板材要求不同結構的攪拌頭,且攪拌頭磨損快;
⑤工藝還不成熟,目前限於結構簡單的構件,如平直的結構、圓形結構。攪拌摩擦焊工藝參數簡單,主要有攪拌頭的旋轉速度、攪拌頭的移動速度、對焊件的壓力及攪拌頭的尺寸等。
2.2 鋁合金的激光焊接
鋁及鋁合金激光焊接技術(Laser Welding) 是近十幾年來發展起來的一項新技術,與傳統焊接工藝相比,它具有功能強、可靠性高、無需真空條件及效率高等特點。其功率密度大、熱輸入總量低、同等熱輸入量熔深大、熱影響區小、焊接變形小、速度高、易於工業自動化等優點,特別對熱處理鋁合金有較大的應用優勢。可提高加工速度並極大地降低熱輸入,從而可提高生產效率,改善焊接質量。在焊接高強度大厚度鋁合金時,傳統的焊接方法根本不可能單道焊透,而激光深熔焊時形成大深度的匙孔,發生匙孔效應,則可以得到實現。
激光焊接鋁合金有以下優點:
①能量密度高,熱輸入低,熱變形量小,熔化區和熱影響區窄而熔深大;
②冷卻速度高而得到微細焊縫組織,接頭性能良好;
③與接觸焊相比,激光焊不用電極,所以減少了工時和成本;
④不需要電子束焊時的真空氣氛,且保護氣和壓力可選擇,被焊工件的形狀不受電磁影響,不產生X 射線;
⑤可對密閉透明物體內部金屬材料進行焊接;
⑥激光可用光導纖維進行遠距離的傳輸,從而使工藝適應性好,配合計算機和機械手,可實現焊接過程的自動化與精密控制。
現在應用的激光器主要是CO2 和YAG 激光器,CO2 激光器功率大,對於要求大功率的厚板焊接比較適合。但鋁合金錶面對CO2 激光束的吸收率比較小,在焊接過程中造成大量的能量損失。YAG激光一般功率比較小,鋁合金錶面對YAG激光束的吸收率相對CO2激光較大,可用光導纖維傳導,適應性強,工藝安排簡單等。
在焊接大厚度鋁合金時,傳統的焊接方法根本不可能單道焊透,而激光深熔焊時形成大深度的匙孔,發生匙孔效應,則可以得到實現。圖3 為激光焊接時的小孔形狀。圖4 為激光深熔焊示意圖[5 ] 。
鋁及鋁合金的激光焊接難點在於鋁及鋁合金對輻射能的吸收很弱,對CO2 激光束(波長為10. 6μm) 表面初始吸收率1. 7 %;對YAG激光束(波長為1. 06 μm)吸收率接近5 %。圖5 為不同金屬對激光的吸收率。比較復雜,高頻引弧時引起電極燒損和電弧擺動,起弧後穩定性不強,同時在電弧的高溫狀態下,電極迅速燒損。但激光與等離子弧復合可明顯提高熔深和焊接速度
D. 呂如何焊接 求高手指點拜託了各位 謝謝
鋁的焊接:
一. 首先強烈推薦購買一套專用鋁材送絲工具,一套工具將包含以下物品:
1 .非金屬襯管——設計來最大程度減小送絲摩擦
2. U型槽驅動滾輪——用來避免教軟的鋁絲斷裂或者變形。這些驅動滾輪不會象V型槽滾輪一樣刮傷鋁絲。使用V型槽滾輪的話,會讓焊絲刮花襯管造成堵塞,引起送絲故障。
3.進口和出口引導裝置——設計來避免焊絲刮傷。
4.接觸頭——使用在鋁材焊接的接觸頭有更大直徑的開口,因為在鋁絲升溫時,產生的膨脹比鋼材多。因此,鋁絲專用接觸頭的尺寸在小得足夠保持電接觸的同時,又足夠允許膨脹。
二. 裝載焊絲到焊機
這里有一個正確裝入鋁絲的竅門,(同樣適用鋼制焊絲)對裝載鋁焊絲、避免焊接時的故障非常重要。用一隻手安全的握住焊絲軸確保其不會松開,一但你拆開了玻璃紙包裝,就用另一隻手握住焊絲松開的一頭——在將其放入驅動滾輪之前不要鬆手。缺少經驗的人通常會沒握緊松開的一頭,而導致整捆焊絲開始松脫散開。如果這樣的事發生了,將無法補救,焊接作業也會受很大的影響——你不得不購買另一捆焊絲。
三. 設置焊絲剎車的松緊度
松緊度只需要保證焊絲剛剛不會松脫即可,但是不能太緊,否則會造成對焊絲的拖拽。要正確的設置,先將松緊度調到最低,然後裝上焊絲,讓其通過驅動滾輪,如果除了裝焊絲的滾軸在動,而其他部件都停止了的話,就說明不夠緊。操作時要小心,因為過緊會造成加在焊絲上的力過多。另外,焊絲用完的最後幾圈無法送絲時不要緊張;通常是因為焊絲太硬而不容易松脫。
四. 設置驅動滾輪松緊度
這可能是整個設置程序中最重要的一步。專家推薦的是,將絲頭以微小的角度位於離絕緣材料表面1英寸的地方。然後,將滾輪松緊度設置在幾乎最小。按下焊槍上的開關,觀察其運作——在焊絲接觸到絕緣材料表面的時候應該滑動。從那一點開始調緊松緊度直到焊絲停止滑動。再一次的,要注意,太緊會導致焊絲的斷裂。這意味著焊絲停留在焊槍里,而焊絲驅動滾輪仍然在轉動,最終的結果是焊絲跑出滾輪後斷裂,或者積壓倒退導致焊絲亂成一團,包括引導襯管,焊槍襯管等。要記住,在你按上述內容設置滾輪松緊度的時候,按下焊槍的開關,送出的焊絲是燙的,所以總是戴上質量好的焊接手套。
五. 確保良好的電源連接
第一步,焊接用的夾具應該安全的夾在焊接工件沒有上漆和污染的區域。要清潔工件,使用除脂溶劑來清除所有的油脂。在進行焊接前還要確保工件表面的乾燥。同時,不要在有可燃材料在附近的情況下焊接,諸如溶劑或者油漆的容器。第二步,用干凈的不銹鋼絲刷將鋁材的表面氧化物清除干凈。
六. 定位非常重要
在焊接的時候,盡量保持焊槍電纜的筆直,以最大程度減少對較軟鋁絲的送絲約束。焊槍電纜線的彎曲會導致焊絲打結,造成很差的送絲。
七. 鋁型材焊接注意事項
鋁管的焊接:
焊接特性:鋁及鋁合金具有導熱性強而熱容量大,線脹系數大,熔點低和高溫強度小等特點,焊接難度大,應採取一定的措施,才能保證焊接質量。
管件及焊絲的清理,焊絲及破口兩側50mm范圍內表面用丙酮清洗干凈,用不銹鋼絲刷刷去表面氧化膜,露出金屬光澤,清理好的破口必須在2小時內焊接,清理好的焊絲放入未用的筒內,必須在8小時內用完,否則重新處理。
鎢棒選用鈰鎢棒,氬氣鈍質不小於99.96%,且含水量不應大於50mg/m3。 4環境溫度不低於5℃,否則應預熱至100~200℃方可施焊,相對濕度控。
如果你要在家或者車間焊接鋁材,那麼首先我們需要澄清下面一些被大眾誤解的東西:1.你至少需要擁有一台價值4000美元的焊機和高超的焊接技巧來焊接鋁材;2.不需要練習就可以完成效果很好的焊接作業;3.你需要購買適合鋁材焊接的昂貴焊槍。
E. 鋁鎂的焊接工藝及技巧
鋁鎂合金焊縫中的氣孔主要是由氫引起的。氫的來源有:焊絲和板材中溶解的氫及 其表面氧化膜吸附的結晶水;氬氣中的氫和濕氣;焊接時由於保護不好空氣中的氫和水氣進入焊 接熔池等。氫在鋁的熔點溫度下溶解度發生突變,並隨溫度增加而急增。鋁鎂合金在焊接時,焊 縫中能否產生氣泡首先取決於溶入氫的濃度,在溶入氫的濃度小於0.69 cm/100g 時,形成氣泡 的可能性極小。但在實際焊接過程中,由於某些因素控制不嚴,在電弧高溫作用下,溶解於鋁中 氫的濃度就會大於0.69 cm/100g,此時氣孔的產生主要取決於結晶速度:當結晶速度快到恰好 抑制了氣泡的形成,則氫只能飽和固溶於焊縫金屬中,而不以氣泡形式逸出,氣孔就會發生;當 結晶速度足夠慢,已形成的氫氣泡來得及逸出焊縫溶池時,也不會形成氣孔;當結晶速度正好使 氣泡能夠形成而來不及逸出時便產生氣孔。其次鋁鎂合金的導熱性強,在同樣的工藝條件下其熔 合區的冷卻速度是鋼的4~7倍,不利於氣泡的浮出,實際冷卻條件下是非平衡狀態。實際生產中 發現鋁鎂合金對氫的溶解度較大,對氣孔的敏感性比純鋁低,出現的氣孔比較少。 弧柱氣氛中水分弧柱空間總是或多或少存在一定數量的水分,尤其在潮濕季節或濕度大的環境里進行焊接時,由 弧柱氣氛中的水分分解產生的氫,溶入過熱的熔融金屬中,是焊縫氣孔產生的主要原因。 弧柱氣氛中的氫形成焊縫的氣孔還與其在鋁鎂合金中溶解度的變化特性有關,如圖3-1所示。在 平衡狀態下,氫的溶解度沿圖中的實線發生變化,在凝固點時可從0.69 mL/100g 突降到 0.036mL/100g,相差約20倍(在鋼中只差不到2倍),這就是形成氣孔的重要原因之一。況且鋁鎂 合金的導熱性很強,在同樣的工藝條件下,熔合區的冷卻速度是高強鋼的4~7倍,不利於氣泡的 浮出,更易促使形成氣孔。而在實際的冷卻條件下是非平衡狀態,溶解度變化沿a 間溶解度差所造成的氣泡數量雖然不多,但可能來不及逸出,而在上浮途中被「擱淺」,形成粗大而孤立的「皮下氣孔」;同樣,若 冷卻速度較小,從a 到b』氣孔雖然多一些,但可能來得及聚合浮出,在凝固點時,由於溶解度 突變 c』),伴隨著凝固過程可在結晶的枝晶前沿形成許多微小氣泡,枝晶晶體的交互生長致使氣泡的生長受到限制,並且不利於浮出,因而可沿結晶的層撞線形成均布形式的 小氣孔,稱為「結晶層氣孔」。 不同的合金系統,對弧柱氣氛中水分的敏感性不同,純鋁對氣氛中水分最為敏感。Al-Mg 合金含 Mg 量增高,氫的溶解度和引起氣孔的臨界分壓PH2均隨之增大,因而對吸收氣氛中水分不太敏感。 相比起來,僅對氣氛中水分而言,同樣焊接條件下,純鋁焊縫產生氣孔的傾向要大些。 不同的焊接方法,對弧柱氣氛中水分的敏感性也是不同的。TIG 或MIG 焊接時氫的吸收速率和吸 收數量有明顯差別。在MIG 焊接時,焊絲是以細小熔滴形式通過弧柱而落入熔池,由於弧柱溫度 最高,且熔滴比面積很大,熔滴金屬顯然最有利於吸收氫;而TIG 焊接時,主要是熔池金屬表面 與氣體氫反應,因其比表面積小和熔池溫度低於弧柱溫度,吸收氫的條件不如MIG 焊時有利。同 時,MIG 焊的熔池深度一般大於TIG 焊時深度,也不利於氣泡的浮出。所以,MIG 焊焊接時,在 同樣的氣氛條件下,焊縫氣孔傾向要比TIG 焊時大些。 氧化膜中水分在正常的焊接條件下,對於氣氛中的水分已經盡量加以限制,這時,焊絲或工件的氧化膜中所吸 附的水分將是生產焊縫氣孔的主要原因。而氧化膜不緻密、吸水性強的鋁合金,要比氧化膜緻密 的純鋁具有更大的氣孔傾向。這是因為鋁鎂合金的氧化膜是由Al2O3和MgO 所構成,而MgO 越多, 形成的氧化膜越不緻密,因而更容易吸附水分。 MIG焊接時,焊絲表面氧化膜的作用將具有重要意義。MIG 焊接時,由於熔深較大,工件端 部的氧化膜迅速熔化掉,有利於氧化膜中水分的排除,坡口氧化膜對焊縫氣孔的影響就小得多了。 焊絲表面氧化膜的清理情況對焊縫含氫量的影響是比較大的, Al-Mg 合金焊絲,則其影響更顯 著。實踐表明,在嚴格限制弧柱氣氛水分的MIG 焊接條件下,用Al-Mg 合金焊絲比用純鋁焊絲時 具有較大的氣孔傾向。 TIG 焊接時,在熔透不足的情況下,母材坡口根部未除凈的氧化膜中所吸附的水分,常常是產生 焊縫氣孔的主要原因。這種氧化膜不僅提供了氫的來源,而且能使氣泡聚集附著。在剛剛形成熔 池時,如果坡口附近的氧化膜未能完全熔化而殘存下來,則氧化膜中水分因受熱而分解出氫,並 在氧化膜上萌生出氣泡;由於氣泡是附著在殘留氧化膜上,不容易脫離浮出,而且還因氣泡是在 熔化的早期形成的,有條件長大,所以常常造成集中形式的大氣孔。這種氣孔在焊縫根部有未熔 合是就更嚴重。坡口端部氧化膜引起的氣孔,常常沿著熔合區原坡口邊緣分布,且內壁呈氧化色 彩,是其重要特徵。由於Al-Mg 合金比純鋁更容易形成疏鬆而吸水性強的厚氧化膜,所以Al-Mg 合金比純鋁更容易產生這種集中形式的氧化膜氣孔。為此,焊接鋁鎂合金時,焊前必須特別仔細 地清理坡口端部的氧化膜。 順便提到,母材表面氧化膜也會在近縫區引起「氣孔」,主要發現於Al-Mg 合金氣焊的條件下, 實際上用氣焊火焰沿板表面加熱一道後,也能看到這種現象。這種「氣孔」往往以表面密集的小 顆粒狀的「鼓泡」形式呈現出來,也可認為是「皮下氣泡」。關於這種「氣孔」的產生機理,還 沒有比較合理的解釋。 材料特性由於液態鋁在高溫時能吸收大量的氫,冷卻時氫在其中的溶解能力急劇下降,在固態時又幾乎不 溶解氫,致使原來溶於液態鋁的氫大量析出,形成氣泡。同時,因鋁及鋁合金密度小、導熱性很 強,不利於氣泡的逸出,因此,鋁及鋁合金焊接易產生氣孔。此外,鋁鎂合金化學活潑性強,表 面極易形成熔點高的氧化膜Al2O3和MgO,由於MgO 的存在,形成的氧化膜疏鬆且吸水性強,這 就更難避免焊縫中產生密集氣孔。用TIG 焊,雖然負半周瞬間氬離子對氧化膜具有「陰極霧化」 作用,但並不能去除氧化膜中的水分,因而鋁鎂合金焊接比純鋁具有更大的氣孔傾向。 氬氣的流量與純度氬氣的流量是影響熔池保護效果的一個重要參數。流量過小,氬氣挺度不夠,排除周圍空氣能力 弱,保護效果差。但是流量過大,不僅浪費氬氣,而且會引起噴出氣流層流區縮短,紊流區擴大, 將空氣捲入保護區,反而降低了保護效果,使焊縫易產生氣孔。這一點在現場施焊時,往往被忽 視。因此,必須選擇合適的氬氣流量。氬氣流量與噴嘴直徑大小有關。氬氣的純度對焊接質量也 有較大的影響。氬氣純度低、雜質多,可增加弧柱氣氛中氫的含量,同時也降低「陰極霧化」效 焊接工藝焊件坡口准備、組對方式和焊接工藝參數的選擇對防止氣孔產生至關重要。焊件組對時根部留有 間隙,可使氧化膜有效地暴露在電弧作用范圍內。改變焊接參數可影響氣體逸出和溶入熔池條件。 焊接速度過慢,熔池保留時間長,增加氫的溶入量;焊接速度較快,易產生未焊透和未熔合缺陷。 實踐證明,採用較快的焊接速度,並配以較大的焊接電流,可有效防止氣孔的產生。增大焊接電 流不僅能保證根部熔合,而且能增加電弧對熔池的攪拌作用,有利於根部氧化膜中氣泡的浮出, 從而減少氣孔的產生。 焊接操作技術掌握熟練的操作技能也是防止氣孔的一個重要環節。鋁鎂合金管道現場焊接位置一般為全位置焊 接,施焊時金屬熔池所處空間位置不斷改變,操作難度較大。但焊槍與工件表面後傾角不能隨熔 池位置的改變而任意改變。若夾角過小,其內側產生紊流,外側則氬氣挺度不夠,氣體保護熔池 效果差。水平管仰焊接頭部位可採用交叉接頭法,以避免接頭部位產生密集氣孔。此外,鎢極伸 出長度過長、電弧過長或不穩等,都可能造成保護氣體的污染而使焊縫產生氣孔。 其它影響因素除上述因素外,還應注意環境因素等方面的影響。在高濕度的環境下,焊絲或輸氬管內壁易吸附 結晶水。因此,環境相對濕度愈低愈好。環境溫度低於5C 施焊時要預熱。
F. 鋁和銅怎麼焊接、鋁和鋁怎麼焊接
鋁和銅焊接主流的焊接方式有如下幾種:
1、威歐丁ALCU-Q303銅鋁焊條解決銅鋁焊接
說明:一種自釺氟化物葯劑的銅鋁焊絲,在焊接的過程中,因為不需要使用任何的焊粉和焊劑比較受操作者的青睞,在母材的溫度達400度的情況下,用火焰的末端稍微燎一下焊絲,熔融的焊絲就會在葯粉的作用下水一般地流動。因為其非常好的流動性,在製冷行業使用得尤其多,比如銅鋁管的套接,鋁管與鋁管的套接。另外在變壓器行業的銅鋁導排的搭接,角接也應用得特別多,如何讓連接的導電排能夠在高壓和高電流的環境下工作,焊層的緻密性尤為重要。
2、低溫 WEWELDINGM51+M51-F低溫銅鋁焊條,179度溫度下解決低溫銅鋁焊接。
說明:屬於低溫釺焊銅鋁焊接,對於特別薄,甚至有一些誇張的薄的情況下,運用這種焊接時最合適不過了
鋁和鋁焊接方式主流的如下幾種:
1、低溫179度的WEWELDING M51焊絲配合M51-F的助焊劑焊接,焊接方法是加熱母體然後用焊絲沾助焊劑塗於焊接部位完全靠母體熱傳導熔化沾有助焊劑的焊絲成型。
2、低溫385度的WEWELDING53,這種是不挑剔鋁合金材質的,任何的鋁基的材質都可以屬於低溫釺焊,同時也可以用於氬弧熔焊,配合53專用的不銹鋼根部刷焊接,加熱母體然後用焊絲劃母體,完全靠母體熱傳導熔化焊絲像蠟燭化到紅的鐵上的效果以後,用根部刷子刷拭劃上去的焊層,然後再劃一遍焊絲,冷卻成型。
3、低溫430度的葯芯威歐丁303低溫鋁焊絲,加熱母體,焊絲大角度點焊焊接部位,火焰尖端稍微撩一下焊絲尖端成型。
4、鋁氬弧焊機焊接,如果是220V的電就用威歐丁WSE200或者WSME250的焊機焊接,如果是380V的電就 用威歐丁WSME400B或者用WSME500。
G. 如何焊接鋁管
鋁管的焊接可以採用如下幾種焊接方式焊接
1、常用的是氬弧焊焊接,焊絲選用4系,5系,6系,在一般的五金商店都有賣的
2、低溫的M51配合M51-F焊絲焊接在工作溫度179度的環境下操作,對於1、2、3、4、6系的焊接材料的親和性比較好,多用於對變形控制要求特別嚴格,或者特別薄的情況下的焊接
3、WE53低溫鋁焊條對於7個系列的鋁合金的焊接,焊接工作溫度在380-400度,優勢在於焊接的時候不需要輔助任何的助焊劑焊接,這樣防止在焊接的過程中產生一些釺劑殘留,而且焊接強度非常高,可以解決3系鋁合金與鑄件,或者壓鑄件的焊接。
4、Q303低溫鋁焊絲對於1、2、3、4、6系的鋁合金焊接性也體現出一些特殊的優勢在於角度不太好的狹小間隙焊接
H. 如何焊接0Cr17Ni7Al材料
不好焊接,你可以選用MG600焊條、焊絲試試,應該是可以的,要不你就打電話問問天專津英源焊接屬的技術部門試試。600的使用說明我有,提供給你,如下:
MG600(MG600TIG)
MG600是一種通用性極廣的高效率、高強度的鉻鎳合金焊條(焊絲),具有極好的塑性、韌性、抗裂性,幾乎適用於各種常見鋼材。具有優良的焊接工藝性能,電弧穩定,易脫渣,飛濺少,焊縫均勻美觀。
用途:適用於焊接工具和模具、高速工具鋼、熱作工具鋼、錳鋼、鑄鋼、T-1鋼、耐震鋼、釩-鉬鋼、彈簧鋼、馬氏體不銹鋼、奧氏體不銹鋼、鐵素體不銹鋼、未知鋼、以及各種不同類型鋼材之間的焊接等。如用於高壓閥門、斷裂螺栓的清除、軸的改造等等,效果非常理想。
焊接接頭機械性能;
實驗項目 實驗結果
抗拉強度 最大124000psi(磅/平方英寸)即855牛頓/平方毫米
屈服強度 最大103000psi(磅/平方英寸)即710牛頓/平方毫米
延伸率 最大22%
I. 鋁青銅焊接要點是什麼
鋁青銅焊接要點:
焊接鋁青銅的主要困難是鋁的氧化,生成緻密而難熔的Al2O3薄膜覆蓋在熔滴和熔池表面。易在焊縫中產生夾渣、氣孔和未熔合等缺陷。清除鋁的氧化物和防止鋁的氧化成為焊接鋁青銅成敗的關鍵。此外w(Al)<7%的單相鋁青銅具有熱脆性,在熱影響區易產生裂紋,比較難焊。w(A1)≥7%的單相合金和雙相合金,採取一些防裂措施是可以焊接的。
一般不推薦採用氣焊,因為很難完全消除鋁的氧化物有害作用。如果必須採用氣焊,則須對焊絲、焊接坡口作徹底清理,使用含氯化鹽和氟化鹽的熔劑。嚴格採用中性焰等措施。
焊條電弧焊一般用於鋁青銅鍛件或鑄件的焊補。採用ECuAl-c(即T237)焊條。除薄件(≤3mm)外,需採用70°~90°的V形坡口;薄件常不預熱,對於w(Al)<10%的合金,預熱和層間溫度一般不應超過150℃。焊接鋁含量為10%~13%的鋁青銅,厚工件推薦預熱和層間溫度約260℃,焊件宜快速冷卻。採用直流反接,短弧和窄焊道施焊。多層焊時層間必須徹底清渣。
鋁青銅具有許多優良的性能。鋁青銅具有很高的強度、硬度和耐磨性,常用來製造齒輪坯料、螺紋等零件。鋁青銅具有很好的抗蝕性,因此可用來製造耐腐蝕零件,如螺旋槳、閥門等。鋁青銅在沖擊作用下不會產生火花,可用來製造無火花工具材料。具有優良的導熱系數和穩定的剛度,作為模具材料在拉伸、壓延不銹鋼板式換熱器時不會產生粘模、劃傷工件等優點,已成為一種新型模具材料。鋁青銅具有形狀記憶效應,已經作為形狀記憶合金得到發展。鋁青銅合金價格相對便宜,成為一些昂貴金屬材料的部分替代品,如替代錫青銅、不銹鋼、鎳基合金等。正是由於鋁青銅所具有的優良特性,越來越受到喜愛,在民用和軍事工業中起著重要的作用。
