为什么火箭发动机火药需要雕刻
A. 希望懂航天一点点的给我科普一下,为什么美国航天飞机发射点火时要先点飞机本身的再点固体推进器为什么
1、液体火箭发动机来需要有一个源大功率的泵把燃料喷进燃烧室,它的设计难度基本上都围绕这个泵展开。液体火箭发动机(分级燃烧或开放涡轮)启动时需要一个过程,大约耗时几秒钟。首先火药包点火产生火药气体带转燃气发生器,然后燃气发生器点火,涡轮泵达到额定转速后主燃烧室才点火。然后再过一会火箭才能达到最大推力。可以注意看一下,液体火箭不是点火之后马上就能起飞的。
固体火箭点火快,所以晚一些点火。
2、火箭发射都需要程序转弯,从垂直起飞逐渐改成水平飞行。这也是个过程,一般是一边上升一边加速一边改平,完全改平时已经飞出大气层了。
3、固体火箭的尾焰比较明亮,显得更大。
B. 火箭火药为什么要雕刻
中心孔不是整形(所谓的人工雕刻)加工出来的,而是在浇筑过程中模具插芯,固化后抽芯得到。
C. 不用火药为什么能把火箭发射升空
运载火箭是用煤油、酒精、偏二甲肼、液态氢等作为燃烧剂,而用硝酸、液态氮等专提供的氧化剂帮助燃烧属的,人们习惯上把燃烧剂和氧化剂通称为火箭发动机的燃料或推进剂。
从物理形态上讲,火箭发动机使用的推进剂有两种形式,一种是液态物质,另一种是固态物质。燃烧剂和氧化剂都是呈液体形态的发动机则称为液体燃料发动机,或称为液体火箭发动机,两者都是呈固体状态,则称为固体燃料火箭发动机或固体火箭发动机。如果在两种燃料中,一种为固体,一种为液体,则称为固-液火箭发动机或直接称其物质名称的火箭发动机。如,氢氧火箭发动机。由于固态燃烧剂产生的能量比液体氧化剂发出的能量高,所以,目前研制的火箭发动机多是固-液火箭发动机,两种燃料相遇燃烧,形成高温高压气体,气体从喷口喷出,产生巨大推力而把运载火箭送上了太空。
D. 火箭弹是靠什么发射的也需要发动机吗
喀秋莎火箭炮用的是火箭发动机
单兵火箭筒,包括苏联的美国的,过去的现代内的,都没有发动容机,就是在发射筒内燃完了,出去了就再无动力。即便有残余的火焰,那也不是发动机工作,主要动力是在火箭筒内获得的。
火箭筒和火箭炮最大的区别就在此。为什么呢?因为成本问题。单兵的武器追求成本低。
推进剂都是用火药
E. 模型火箭发动机的火药是什么
我拆过,推进剂是用黑火药压制的,开伞剂是粒状黑火药
F. 固体发动机火药为什么需要由人为的来雕刻
这是个细活,得有丰富的经验根据需求把药加工成不同的形状,理论上当然是可以仿真的,但是鉴于化学专业的尿性这玩意仿真根本就不靠谱,所以现在业内主要是靠药学专家(雕刻工人)把整块药加工出来,点火试试,再改改,再点火烤,大体就是这个流程吧
固体推进剂在发动机里边为药柱状(机械性能类似软轮胎),一般不是实心的,会有中心孔道(如下图所示)。中心孔不同,其燃烧行为不一样,设计时根据具体需要选择。这里需要强调的是,中心孔不是整形(所谓的人工雕刻)加工出来的,而是在浇筑过程中模具插芯,固化后抽芯得到。
G. 从火药火箭到航天火箭是怎么发展的
人类在对自己飞行梦想的不断尝试中,一次次进行着飞行的尝试,随着科学技术的发展,人们逐渐认识到航空与航天的不同,航空飞行器不论飞机、气球还是飞艇都需要依靠空气的存在,没有了空气,所谓的飞行也就不可能实现。而航天之梦实现的最原始依据就是火箭,火箭的飞行利用了动力学中的动量守恒原理,它不但能在空气中飞行,还可以在大气层外的真空中飞行,而且由于没有了空气阻力,在真空中的飞行性能更好。通过不断的尝试,人们逐渐认识到要想进入太空,只有借助于喷气推进的火箭。
火箭的发明最早出现在中国。在中国古代的记载中,火箭的含义比较广泛,比如在电影电视中经常可以看到箭头点燃,靠弓弩发射的竹箭也称为火箭,而真正的火箭是在火药出现后才发明的。从唐末到宋初火药武器开始使用,但由于其配方和制作方法还处于初级阶段,所以不足以作为推进的燃料。随着火药配方和制造技术的进步,12世纪初研制成功了固体火药,并把它用于制造火器和焰火烟花,在使用这些火器与烟花特别是手持使用时,人们感到火药燃烧会产生很强的后坐力,于是有心人在这种启示下发明了新的火药玩具。大约12世纪末到13世纪初出现的玩具“穿天猴”可以说是真正意义上利用反作用原理的火箭,将这种原理的火箭作为武器使用具有相当的杀伤力,所以在战争中也开始频繁地使用它。
公元1127年南宋政权建立后,南宋、金和蒙古频繁交战,各方都使用了火器。1161年11月,金国侵略中原时,南宋军队第一次使用了火箭武器——“霹雳炮”重挫金军,这是人类历史第一次在战场上使用火箭武器。连年的交战使火箭技术逐渐被金和蒙古所掌握,于是当时各方兵工厂的一个重要内容就是火药制造,在这种情况下火药的配方有所改进,制造工艺渐趋成熟,其燃烧速度和爆炸力也得到增强。13世纪蒙古在先后三次的大举西征中,采用了南宋的火器技术,用汉人工匠制造大炮。当时蒙古大军在欧洲战场使用的火箭已有多箭齐发的火箭筒,这种集束式火箭发挥了绝大的威力,使欧洲人大为吃惊。当然在这几次西征中,阿拉伯人从中掌握了火药和火箭的技术,并进一步把它传入了西方。
明代中国火箭发展进入了一个比较重要的时期,出现了很多种类的火箭,除了单级火箭,还发展了各种集束火箭、火箭弹和原始的多级火箭,并且对各种火箭的制造、应用、配备和发射剂原料配比及加工制造等都作了详尽地叙述。在当时的水、步、骑兵中,火箭武器已作为必备的武器,甚至还有专门的火箭部队,有关火箭武器的使用、布阵、作战技术和管理也都有条例规定。明代的《武备志》中曾有过这些火箭的记载。
明代的火箭虽然种类繁多,但发展主要体现在火箭样式的更新上,有关火箭的尺寸、规格、装药剂量、发射距离方面却少有讨论。而在火箭的稳定方面,仍然是传统的箭杆加羽毛方式,精度不能得到显著的提高,这就使火箭的尺寸和射程难以提高。进入清代,火箭虽然也有一定的发展,但其发展基本停留在原地。一方面是因为长时间的和平以及封建君主所推行的封闭政策所影响,但从技术的发展来看,主要还是缺少相应科学知识的指导。纵观中国古代火箭技术的发展过程,所走的基本是经验式的道路,没有对火药的燃烧机理,火箭的推进原理,箭羽的稳定原理等问题进行深入的研究,而仍局限于用阴阳五行说来解释爆炸原理,这就使得火箭技术难以出现改进。
而火箭技术在13世纪传入阿拉伯国家后,又逐渐传入欧洲。意、法、德、波、英、俄等国都先后掌握了火箭技术。尤其出于战争的需要,这些国家在使用火箭的过程中,深入研究火药配比,火箭形状、大小及稳定装置和火箭材料,在这些方面进行了重大改进。很快,欧洲的火箭在重量、射程和精度等方面就超过了中国火箭。公元18世纪初,波兰就已生产出了重达22.7千克甚至54.4千克的大型火箭,德国也试验了多种带导向杆的重达45.4千克的火箭。
但有趣的是,正如火箭没有在它的故乡中国得到发展一样,对欧洲近代火箭技术发展产生巨大影响的不是欧洲那些较早使用火箭武器的国家,而是英国。这里不能不提及的就是威廉姆·康格里夫研制的火箭,而实际上“康格里夫火箭”并不是欧洲大陆火箭技术发展的必然结果,也很少受到其影响,主要借鉴的却是印度的火箭技术。
英国人康格里夫1793年毕业于剑桥大学,是学文科的,由于其父经营英国皇家兵工厂的影响,他对兵工机械怀有浓厚兴趣,因此后来便弃文习武,进入这家兵工厂,并且开始在英国士兵从印度带回的火箭资料的基础上,研究改进火箭的速度和射程。经过几年的探索,1805年,康格里夫采用新型火药制造出了一种实用的火箭,重14.5千克,箭长1.06米,直径0.1米,并且装了一根4.6米长的平衡杆,射程可达1800米。这种火箭在英国击败拿破仑军队的战争中建立了卓著的战功。由于康格里夫在火箭方面做出的贡献,英国政府于1814年授予他爵位荣誉,并在1817年被选为议会议员。然而,康格里夫火箭还未能解决制导和控制问题,精度较差。1844年,英国的威廉·霍尔发明了一种自旋稳定器,并用来对康格里夫火箭进行改进。虽然与现代火箭相比,这些火箭都十分简陋,应用也不广泛,但它们的出现却为现代火箭的诞生奏响了序曲。
康格里夫研制的火箭在射程、精度及稳定方式上都作了改进,其性能已经近乎达到了火药火箭的极限。由于其巨大的杀伤力,使各国纷纷开始重视火箭的研究和使用。此后,战争火箭的另一项重大进步就是稳定性的提高。19世纪中叶英国的发明家威廉姆·黑尔在火箭的尾部装上三只倾斜的稳定螺旋板,当火箭发射时由于空气动力的作用使火箭自身旋转从而达到稳定。到第二次世界大战为止,火药火箭的发展已臻于完善。它的基本结构是由装有火药的火箭筒,中间装有发射药作为推进剂,头部装有高爆炸药和引信,尾部为喷口,另外采用尾部稳定翼起稳定作用,在发射装置上采用发射架或发射筒。比较著名的就是前苏联的火箭炮——喀秋莎。
其实,上面所提到的火箭和现在我们所说的火箭并不是一回事。上面提到的火箭其实是火药火箭。但是火药火箭的工作原理和现在的固体燃料火箭是一样的,以火药燃烧产生推力。
火药火箭是第一种实用的反作用推进装置,虽然有许多局限证明它不是理想的太空运载工具,但它的基本原理却完全适用于航天运载工具的需要,这样运用火箭作为宇宙航行基本运载工具的想法在先驱者脑中逐步酝酿。后来液体燃料火箭出现,进一步为航天推进器的实现提供了可靠的技术保证,也让航天先驱者看到了使用火箭来完成航天运载的曙光。经过不断地研究和试验,火箭作为太空飞行的推进装置逐渐得到证实,最终为人类通向太空架起了桥梁。
知识点
火箭炮
火箭炮是炮兵装备的火箭发射装置,发射管赋予火箭弹射向,由于通常为多发联装,又称为多管火箭炮。火箭弹靠自身的火箭发动机动力飞抵目标区。火箭炮能多发联射和发射弹径较大的火箭弹,它的发射速度快,火力猛,突袭性好,但射弹散布大,因而多用于对目标实施面积打击。在第二次世界大战末期和战后,各国都非常重视火箭炮的发展与应用。进入20世纪70年代以后,火箭炮又有了新的进步,其性能和威力日益提高,已成为现代炮兵的重要组成部分。
H. 为什么火箭发动机喷出的火焰看上去是一节一节的
现代火箭发动机主要分固体推进剂和液体推进剂发动机。所谓“推进剂”就是燃料(燃烧剂)加氧化剂的合称。
一、固体火箭发动机
固体火箭发动机为使用固体推进剂的化学火箭发动机。固体推进剂有聚氨酯、聚丁二烯、端羟基聚丁二烯、硝酸酯增塑聚醚等。
固体火箭发动机由药柱、燃烧室、喷管组件和点火装置等组成。药柱是由推进剂与少量添加剂制成的中空圆柱体(中空部分为燃烧面,其横截面形状有圆形、星形等)。药柱置于燃烧室(一般即为发动机壳体)中。在推进剂燃烧时,燃烧室须承受2500~3500度的高温和102~2×107帕的高压力,所以须用高强度合金钢、钛合金或复合材料制造,并在药柱与燃烧内壁间装备隔热衬。
点火装置用于点燃药柱,通常由电发火管和火药盒(装黑火药或烟火剂)组成。通电后由电热丝点燃黑火药,再由黑火药点火燃药拄。
喷管除使燃气膨胀加速产生推力外,为了控制推力方向,常与推力向量控制系统组成喷管组件。该系统能改变燃气喷射角度,从而实现推力方向的改变。
药柱燃烧完毕,发动机便停止工作。
固体火箭发动机与液体火箭发动机相比较,具有结构简单,推进剂密度大,推进剂可以储存在燃烧到中常备待用和操纵方便可靠等优点。缺点是“比冲”小(也叫比推力,是发动机推力与每秒消耗推进剂重量的比值,单位为秒)。固体火箭发动机比冲在250~300秒,工作时间短,加速度大导致推力不易控制,重复起动困难,从而不利于载人飞行。
固体火箭发动机主要用作火箭弹、导弹和探空火箭的发动机,以及航天器发射和飞机起飞的助推发动机。
二、液体火箭发动机
液体火箭发动机是指液体推进剂的化学火箭发动机。常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等。氧化剂和燃烧剂必须储存在不同的储箱中。
液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。
推力室是将液体推进剂的化学能转变成推进力的重要组件。它由推进剂喷嘴、燃烧室、喷管组件等组成,见图。推进剂通过喷注器注入燃烧室,经雾化,蒸发,混合和燃烧等过成生成燃烧产物,以高速(2500一5000米/秒)从喷管中冲出而产生推力。燃烧室内压力可达2O0大气压(约20OMPa)、温度300O~4000℃,故需要冷却。
推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。
发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。
液体火箭发动机的优点是比冲高(25O~5OO秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。
三、其他能源的火箭发动机
(一)电火箭发动机
电火箭发动机是利用电能加速工质,形成高速射流而产生推力的火箭发动机。与化学火箭发动机不同,这种发动机的能源和工质是分开的。电能由飞行器提供,一般由太阳能、核能、化学能经转换装置得到。工质有氢、氮、氩、汞、氨等气体。
电火箭发动机由电源、电源交换器、电源调节器、工质供应系统和电推力器组成。电源和电源交换器供给电能;电源调节器的功用是按预定程序起动发动机,并不断调整电推力器的各种参数,使发动机始终处于规定的工作状态;工质供应系统则是贮存工质和输送工质;电推力器的作用是将电能转换成工质的动能,使其产生高速喷气流而产生推力。
按加速工质的方式不同,电火箭发动机有电热火箭发动机、静电火箭发动机和电磁火箭发动机的三种类型。电热火箭发动机利用电能加热(电阻加热或电弧加热)工质(氢、胺、肼等),使其气化;经喷管膨胀加速后,由喷口排出而产生推力。静电火箭发动机的工质(汞、铯、氢等)从贮箱输入电离室被电离成离子,然后在电极的静电场作用下加速成高速离子流而产生推力。电磁火箭发动机是利用电磁场加速被电离工质而产生射流,形成推力。电火箭发动机具有极高的比冲(70O~250O秒)、极长的寿命(可重复起动上万次、累计工作可达上万小时)。但产生的推力小于10ON。这种发动机仅适用于航天器的姿态控制、位置保持等。
(二)核火箭发动机
核火箭发动机用核燃料作能源,用液氢、液氦、液氨等作工质。核火箭发动机由装在推力室中的核反应堆、冷却喷管、工质输送系统和控制系统等组成。在核反应堆中,核能转变成热能以加热工质,被加热的工质经喷管膨胀加速后,以6500~1100O米/秒的速度从喷口排出而产生推力。核火箭发动机的比冲高(250~1000秒)寿命长,但技术复杂,只适用于长期工作的航天器。这种发动机由于核辐射防护、排气污染、反应堆控制,以及高效热能交换器的设计等问题未能解决,至今仍处于试验之中。此外,太阳加热式和光子火箭发动机尚处于理论探索阶段。