切割基流数据如何处理
① GPS内业数据处理的基本流程及如何判断成果质量
基本流程:
1、数据抄欲处理袭
与外业记录对照,修改观测文件中的一些参数:
(1)检查外业观测数据
(2)点名的编辑
(3)天线高检查或编辑
(4)。。。
2、基线解算
(1)设置基线解算的参数(使用的卫星,卫星高度角,对流层电离层模型 等)
(2)基线解算
(3)察看基线报告,不同的软件成果质量判断不一样,LGO是看各个检验
(4)对于有问题的基线或其残差过大,可采用开窗删星等手段处理
(5)继续解算,重复(2)(3)(4)过程,直到得到满意的结果
3、无约束平差
(1)设置平差参数
(2)平差欲分析
(3)计算闭合环
(4)平差
(5)看平差报告
4、约束平差
(1) 新建椭球投影坐标系
(2)导入控制点
(3)控制点匹配
(4)约束平差
不同的解算软件过程可能不一样,不过大同小异,基本流程是一样的,具体的成果质量判断要参考软件的用户手册了
② 传统的数据处理方式能否应对大数据
数据分析行业发展的时间也不短了,以前的数据发展成现在的大数据了。因此有很多人担忧,传统的数据处理方法还是否能够应对大数据,其实这个担忧是正确的,我们不能总是想着一劳永逸,只有居安思危才能够让技术得到发展。下面我们就给大家介绍一下现在传统数据处理方式和现今大数据的具体情况。
首先我们需要说的就是大数据环境下的数据处理需求。其实大数据环境下数据来源非常丰富且数据类型多样,存储和分析挖掘的数据量庞大,对数据展现的要求较高,并且很看重数据处理的高效性和可用性。但是传统数据处理的方法有什么不足呢?传统的数据采集来源单一,且存储、管理和分析数据量也相对较小,大多采用关系型数据库和并行数据仓库即可处理。对依靠并行计算提升数据处理速度方面而言,传统的并行数据库技术追求高度一致性和容错性,根据CAP理论,难以保证其可用性和扩展性。而传统的数据处理方法是以处理器为中心,而大数据环境下,需要采取以数据为中心的模式,减少数据移动带来的开销。因此,传统的数据处理方法,已经不能适应大数据的需求。所以说我们需要马上解决这些问题。
那么大数据的处理流程有什么步骤呢?每个步骤需要什么工具呢?其实大数据的基本处理流程与传统数据处理流程并无太大差异,主要区别在于:由于大数据要处理大量、非结构化的数据,所以在各个处理环节中都可以采用MapRece等方式进行并行处理。
那么大数据技术为什么能够提高数据的处理速度呢?这是因为大数据有并行处理的好工具,这个工具就是MapRece。而大数据可以通过MapRece这一并行处理技术来提高数据的处理速度。MapRece的设计初衷是通过大量廉价服务器实现大数据并行处理,对数据一致性要求不高,其突出优势是具有扩展性和可用性,特别适用于海量的结构化、半结构化及非结构化数据的混合处理。当然,MapRece将传统的查询、分解及数据分析进行分布式处理,将处理任务分配到不同的处理节点,因此具有更强的并行处理能力。作为一个简化的并行处理的编程模型,MapRece还降低了开发并行应用的门槛。这是因为MapRece是一套软件框架,包括Map(映射)和Rece(化简)两个阶段,可以进行海量数据分割、任务分解与结果汇总,从而完成海量数据的并行处理。
关于MapRece的具体情况我们就给大家介绍到这里了,通过这篇文章我们不难发现,传统的数据分析工具是不能够应对大数据的,不过MapRece可以能够更高效地解决问题。
③ 数据处理方式
什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),网络随便找找都有。
大数据处理流程:
1.是数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。
2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。
3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。
4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。
数据采集:
1.批数据采集,就是每天定时去数据库抓取数据快照,我们用的maxComputer,可以根据需求,设置每天去数据库备份一次快照,如何备份,如何设置数据源,如何设置出错,在maxComputer都有文档介绍,使用maxComputer需要注册阿里云服务
2.实时接口调用数据采集,可以用logHub,dataHub,流数据处理技术,DataHub具有高可用,低延迟,高可扩展,高吞吐的特点。
高吞吐:最高支持单主题(Topic)每日T级别的数据量写入,每个分片(Shard)支持最高每日8000万Record级别的写入量。
实时性:通过DataHub ,您可以实时的收集各种方式生成的数据并进行实时的处理,
设计思路:首先写一个sdk把公司所有后台服务调用接口调用情况记录下来,开辟线程池,把记录下来的数据不停的往dataHub,logHub存储,前提是设置好接收数据的dataHub表结构
3.前台数据埋点,这些就要根据业务需求来设置了,也是通过流数据传输到数据仓库,如上述第二步。
数据处理:
数据采集完成就可以对数据进行加工处理,可分为离线批处理,实时处理。
1.离线批处理maxComputer,这是阿里提供的一项大数据处理服务,是一种快速,完全托管的TB/PB级数据仓库解决方案,编写数据处理脚本,设置任务执行时间,任务执行条件,就可以按照你的要求,每天产生你需要数据
2.实时处理:采用storm/spark,目前接触的只有storm,strom基本概念网上一大把,在这里讲一下大概处理过程,首先设置要读取得数据源,只要启动storm就会不停息的读取数据源。Spout,用来读取数据。Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple。stream,用来传输流,Tuple的集合。Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。可以在里边写业务逻辑,storm不会保存结果,需要自己写代码保存,把这些合并起来就是一个拓扑,总体来说就是把拓扑提交到服务器启动后,他会不停读取数据源,然后通过stream把数据流动,通过自己写的Bolt代码进行数据处理,然后保存到任意地方,关于如何安装部署storm,如何设置数据源,网上都有教程,这里不多说。
数据展现:做了上述那么多,终于可以直观的展示了,由于前端技术不行,借用了第三方展示平台datav,datav支持两种数据读取模式,第一种,直接读取数据库,把你计算好的数据,通过sql查出,需要配置数据源,读取数据之后按照给定的格式,进行格式化就可以展现出来
@jiaoready @jiaoready 第二种采用接口的形式,可以直接采用api,在数据区域配置为api,填写接口地址,需要的参数即可,这里就不多说了。
④ 以下哪个可用于大数据的流式处理
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。
在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。
当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。
在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。
在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,医院可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和医院目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从医院到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。
在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。
在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。
在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。
⑤ kettle 处理来自两个数据流的数据
kettle是按照数据流进行执行的,如果数据流错误,正常就会终止执行,但是如果在输出步骤发生错误,可以定义错误处理(输出控件-右键选择),将错误数据进行输出
⑥ 线切割基本怎么操作
看你用什么机器了第三章 基本功能操作
一、全机总清
全机总清就是清除控制器内存中的所有程序和已输入的变量和参数,重新初始化。因为本控制器具有自动清零功能,如遇内存数据出乱时将自动全机总清。
操作方法:按复位、功能、总清。
现象:控制器显示8 0 0 —3 b,喇叭发出短促“嘀”声,全机总清。遇内存.数据出乱,控制器也显示800—3b,但喇叭不发声
二、输入程序
本控制器采用复旦型3 B 格式程序指令,可用键盘输入编好的程序或联机输入用电脑编程软件编好的程序。
3 B 指令格式:B X B Y B J GZ
(一)键盘输入
用手工方式在键盘上输入人工编好或电脑上编好的程序。
操作方法:按复位、数字n (n代表起始程序条号,为叙述方便,以下n均代表程序条号),控制器显示n EA即可输入程序。
例:输入下列程序
1 B 100 B B 3 0 0 GX NR 1
2 B B B 1 0 0 0 GY L2
3. . . . . .
具体操作如下:
所按键 显示值
复位 EA
1 1 EA
B 0
1 0 0 1 0 0
B 0
B 0
3 0 0 3 0 0
GX 3 0 0 H
NR 1 2 EA
B 0
1 0 0 0 1 0 0 0
GY 1 0 0 0 Y
L 2 3 EA
. . . . . . . . . .
技巧经验:1、当前一个分隔符B后数值为零时,可省按B ;
2、输入过程如发生错误,控制器给予提示,提示含义详见第五章附录一出错情况一览表;
3、输入程序时若X、Y、J、R数值按错可连续按零擦除刚输入的数值,但B、计数方向、加工指令按错不可以删除,只能整条程序重新输入。
(二)联机输入
用联机线将电脑和控制器连接起来,不同的编程软件的联机线都有所不同,操作也有所不同,但控制器上的操作是相同的。
操作方法:按复位、数字n 、联机。从第n 条开始等待读入电脑编程软件发送的程序。
现象:在等待和正常读入程序时,控制器没有显示,读入完毕或出错时喇叭鸣叫一声。当控制器显示(n+m)EA(m是程序条数)表示正确接收,当控制器显示出错提示时,表示传送失败(接收有些编程软件的程序时会产生奇偶校验错误,即E1错误,但只要输入的程序能正常校零,可以不予理会错误的提示)。
三、显示程序
显示程序用来检查所输入的程序是否正确。
操作方法:按复位、数字n 、显X、显Y、显J、显Z,检查第n条程序的X、Y、J值和GZ性质。然后按递增键,为显示下一条程序作准备。
例:显示第 n 条程序
具体操作:
所按键 显示值
复位 EA
数字n (条号) n EA
显X X值
显Y Y值
显J J值
显Z G Z 性质
递增 (n+1)EA
四、校对程序
校验程序就是对输入的程序进行高速回零校验,可顺向校验和逆向校验。校验结束后按复位、显X、显Y来显示校验后的X轴和Y轴误差
(一)、顺向校验
操作方法:按复位、数字n (条号)、校零。
现象:按下校零键时控制器黑屏,开始校验,当控制器显烁(n+m)bb(m表示程序总条数) ,喇叭发出“嘀、嘀”声,表示校验结束。
(二)、逆向校验:
操作方法:按复位、数字n (条号)、倒割、校零。
现象:按下校零键时控制器黑屏,开始校验,当控制器显烁 -(n-m)bb(m表示程序总条数) ,喇叭发出“嘀、嘀”声,表示校验结束。如逆向校验的最后一条程序条号为第一条,则控制器显示为-000E0,喇叭发出短促的“嘀”声。
显示校验结果 : 按复位键
显X键 显示校验后X轴误差
显Y键 显示校验后Y轴误差
技巧经验:1、校验时遇到空程序或选择停(停机码)时将结束校验,因此校验前不能设置选择停(停机码);
2、若校验结果为负偏差,则校验结果以补码(9XXXXX)显示,此时再按一次显示键,则显示偏差的绝对值;
3、用自动旋转功能处理的旋转图形,只能校验旋转部分程序,不能校验整个图形的回零误差,校验前不可输入旋转条数及次数。
五、修改程序
修改程序就是删除、插入或修改一条程序。
在输入程序时若X 、Y 、J 、R数值按错可连续按零擦除刚输入的数值,但B 、计数方向、加工指令按错不可删除,只能整条程序重新输入。
(一)、删除一条程序
操作方法:按复位、数字n(条号)、删除、删除。
现象:当第二次按删除时,显示的n EA闪动一下,表示删除有效。
(二)、插入一条程序
操作方法:按复位、数字n(条号)、插入、插入。
现象:当第二次按插入时,显示的nEA闪动一下,表示插入有效,然后输入相应的程序内容,插入处之后的程序号都相应加上1。
(三)、修改一条程序
修改一条已输入的程序的方法就是把这条程序重新输入一次,例如对第m条程序修改,操作方法就是输入第m条程序。
六、执行程序
程序经过修改、校验正确后,就可以开始执行,即进行切割。切割可分为正常切割和模拟切割(又称空走)
(一)、正常切割
正常切割就是按正常情况从开始条号加高频进行切割。分正割:按照输入的程序从开始的条号nEA开始进行切割;逆割:因为断丝或其它原因需从输入的程序的结束条号开始切割;继续加工:当遇断电后或在加工状态下误按复位键引起的加工中断而重新开始的切割。
注:程序中圆弧和圆弧相交,又要加补偿时,需加过渡圆弧,否则出错。
1 、正割方法
操作方法: 按复位、数字n(条号)、加工、进给、高频,开始正常切割加工。再按高频或者 复位 暂停加工。
2、逆割方法
操作方法:按复位、数字n(程序的最后条号)、倒割、加工、进给、高频,开始逆向切割加工。再按高频或者 复位 暂停加工。
3、继续加工
操作方法:按复位、加工、进给、高频,开始断电后继续切割或在加工状态下误按复位键引起加工中断的继续切割。再按高频暂停加工。
技巧经验:1、在“EA”状态下按一次进给,面板上的X、Y(U、V)方向进给指示灯至少各有一个点亮,在步进电源打开的情况下锁紧步进电机;再按一次进给,进给指示灯熄灭,松开步进电机。
2、在加工状态下,按一次高频,高频指示灯亮,表示控制器中控制高频的开关处于开状态;再按一次高频,高频指示灯熄灭,表示控制器中控制高频的开关处于关状态断。
3、控制器与其余设备连接正常,且机床和高频电源都处于开状态,在正常切割时,显示的数值将不断变化,进给指示灯不断闪烁。如果高频部分有问题,显示的数值将不会变化,进给指示灯点亮但不闪烁。
(二)、模拟加工
模拟加工就是按正常情况从开始条号,不加高频进行切割仿真。
操作方法:按复位、数字n(条号)、加工、进给、模拟,开始模拟加工。再按 模拟暂停。
现象:按进给,进给指示灯亮,再按模拟,显示数字值不断变化,进给指示灯不断闪烁。
⑦ MODIS数据处理流程
步骤:SHAPE \* MERGEFORMAT
MODIS L1B数据
几何校自正及bow-tie校正
FLAASH大气校正
影像裁剪
渤海湾海域影像图
过程:几何校正及bow-tie校正
FLAASH大气校正
影像裁剪
⑧ 以下哪个产品是基于流处理架构实现的
大数据是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据技术,是指从各种各样类型的数据中,快速获得有价值信息的能力。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
大数据有四个基本特征:一、数据体量巨大(Vomule),二、数据类型多样(Variety),三、处理速度快(Velocity),四、价值密度低(Value)。
在大数据的领域现在已经出现了非常多的新技术,这些新技术将会是大数据收集、存储、处理和呈现最强有力的工具。大数据处理一般有以下几种关键性技术:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。
大数据处理之一:采集。大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的思考和设计。
大数据处理之二:导入和预处理。虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
大数据处理之三:统计和分析。统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据处理之四:挖掘。与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。
大数据的处理方式大致分为数据流处理方式和批量数据处理方式两种。数据流处理的方式适合用于对实时性要求比较高的场合中。并不需要等待所有的数据都有了之后再进行处理,而是有一点数据就处理一点,更多地要求机器的处理器有较快速的性能以及拥有比较大的主存储器容量,对辅助存储器的要求反而不高。批量数据处理方式是对整个要处理的数据进行切割划分成小的数据块,之后对其进行处理。重点在于把大化小——把划分的小块数据形成小任务,分别单独进行处理,并且形成小任务的过程中不是进行数据传输之后计算,而是将计算方法(通常是计算函数——映射并简化)作用到这些数据块最终得到结果。
当前,对大数据的处理分析正成为新一代信息技术融合应用的节点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。大数据也是信息产业持续高速增长的新引擎。面对大数据市场的新技术、新产品、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动”转变为“数据驱动”。对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测,跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
目前大数据在医疗卫生领域有广为所知的应用,公共卫生部门可以通过覆盖全国的患者电子病历数据库进行全面疫情监测。5千万条美国人最频繁检索的词条被用来对冬季流感进行更及时准确的预测。学术界整合出2003年H5N1禽流感感染风险地图,研究发行此次H7N9人类病例区域。社交网络为许多慢性病患者提供了临床症状交流和诊治经验分享平台,医生借此可获得院外临床效果统计数据。基于对人体基因的大数据分析,可以实现对症下药的个性化治疗。
在医药研发方面,大数据的战略意义在于对各方面医疗卫生数据进行专业化处理,对患者甚至大众的行为和情绪的细节化测量成为可能,挖掘其症状特点、行为习惯和喜好等,找到更符合其特点或症状的药品和服务,并针对性的调整和优化。在医药研究开发部门或公司的新药研发阶段,能够通过大数据技术分析来自互联网上的公众疾病药品需求趋势,确定更为有效率的投入产品比,合理配置有限研发资源。除研发成本外,医药公司能够优化物流信息平台及管理,更快地获取回报,一般新药从研发到推向市场的时间大约为13年,使用数据分析预测则能帮助医药研发部门或企业提早将新药推向市场。
在疾病诊治方面,可通过健康云平台对每个居民进行智能采集健康数据,居民可以随时查阅,了解自身健康程度。同时,提供专业的在线专家咨询系统,由专家对居民健康程度做出诊断,提醒可能发生的健康问题,避免高危病人转为慢性病患者,避免慢性病患者病情恶化,减轻个人和医保负担,实现疾病科学管理。对于医疗卫生机构,通过对远程监控系统产生数据的分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。武汉协和目前也已经与市区八家社区卫生服务中心建立远程遥控联系,并将在未来提供“从到家”的服务。在医疗卫生机构,通过实时处理管理系统产生的数据,连同历史数据,利用大数据技术分析就诊资源的使用情况,实现机构科学管理,提高医疗卫生服务水平和效率,引导医疗卫生资源科学规划和配置。大数据还能提升医疗价值,形成个性化医疗,比如基于基因科学的医疗模式。
在公共卫生管理方面,大数据可以连续整合和分析公共卫生数据,提高疾病预报和预警能力,防止疫情爆发。公共卫生部门则可以通过覆盖区域的卫生综合管理信息平台和居民信息数据库,快速监测传染病,进行全面疫情监测,并通过集成疾病监测和响应程序,进行快速响应,这些都将减少医疗索赔支出、降低传染病感染率。通过提供准确和及时的公众健康咨询,将会大幅提高公众健康风险意识,同时也将降低传染病感染风险。
在居民健康管理方面,居民电子健康档案是大数据在居民健康管理方面的重要数据基础,大数据技术可以促进个体化健康事务管理服务,改变现代营养学和信息化管理技术的模式,更全面深入地从社会、心理、环境、营养、运动的角度来对每个人进行全面的健康保障服务,帮助、指导人们成功有效地维护自身健康。另外,大数据可以对患者健康信息集成整合,在线远程为诊断和治疗提供更好的数据证据,通过挖掘数据对居民健康进行智能化监测,通过移动设备定位数据对居民健康影响因素进行分析等等,进一步提升居民健康管理水平。
在健康危险因素分析方面,互联网、物联网、医疗卫生信息系统及相关信息系统等普遍使用,可以系统全面地收集健康危险因素数据,包括环境因素(利用GIS系统采集大气、土壤、水文等数据),生物因素(包括致病性微生物、细菌、病毒、真菌等的监测数据),经济社会因素(分析经济收入、营养条件、人口迁徙、城镇化、教育就业等因素数据),个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等,利用大数据技术对健康危险因素进行比对关联分析,针对不同区域、人群进行评估和遴选健康相关危险因素及制作健康监测评估图谱和知识库也成为可能,提出居民健康干预的有限领域和有针对性的干预计划,促进居民健康水平的提高。