线切割放电间隙是多少
A. 线切割后,材料的间隙是多少啊
割缝的大小是由所用的电极丝的粗细和放电间隙决定的
如果是0.2的钼丝,正常放电的话割缝在0.23~0.25
B. 线切割 线切割的时候铜丝走过的地方腐蚀的金属量就是补偿中的放电间隙的厚度吗到底一次能腐蚀多少金属,
线切割的时候钼丝走过的地方是熔化而不是腐蚀,对尺寸的影响主要是钼丝直径。如果你想确切了解,拿一精确测量过的试块,切断,再对接测量,你就对你自己的机床有了解了。
C. 怎样调节线切割的放电间隙
应用的过程中要学会总结,俗话说的好“万事学会容易学精难啊!”要掌握好他的规律。一般是在0.01-0.025mm中变化,自己注意总结和掌握就行了。兄弟加油
D. 钼丝火花放电间隙是多少
钼丝补偿量的算法非常简单,相当于刀具补偿半径。加工孔时刀具(即回钼丝)内偏,加答工外形或凸模时钼丝外偏。因为编程是按照刀具(钼丝)中心轨迹计算的。
通常情况下:
补偿量=钼丝半径+放电间隙0.01
例如:0.18钼丝,间隙补偿取0.1即可(0.18/2+0.01=0.1)
0.14钼丝,间隙补偿取0.08即可(0.14/2+0.01=0.08)
E. 线切割加工钼丝的放电间隙问题
电参数对线切割加工指标的影响
1. 短路峰值电流对工艺指标的影响
在一定条件下,但其他工艺条件不变时,增大短路峰值电流,可以提高切割速度,但表面粗
糙度将会变差。这是作为短路峰值电流越大,单个脉冲能量越大,放电的的电痕就越大,切
割速度高,表面粗糙度就比较差。在增大短路峰值电流的同时,电极丝的损耗也加大,在严
重的情况下甚至会发生断丝现象,同时也有可能影响到加工精度。
2. 开路电压
开路电压增大,加工电流增大,切割速度提高,表面粗糙度变差。这是因为开路电压增大,
致使排削更容易,切割的速度和加工的稳定性也都有所提高,但随着加工间隙的增大,加工
精度略有下降。同时开路电压的增大还会使电极丝产生震动,加大了电极丝的损耗;正常情
况下,我们在采用乳化液作为介质使用快走丝方式加工时,其开路电压值一般取60V 到150V
之间。
3. 脉冲宽度
当脉冲宽度增大时,切割速度提高,但是表面粗糙度变差。这是因为脉冲宽度增大,单个脉
冲放电能量增大,所以致使切割速度提高,表面粗糙度变差。一般情况下,脉冲宽度值通常
取2~60μs,作精加工时,脉冲宽度取值一般小于20μs,
4. 脉冲间隙
当脉冲间隙减少时平均电流增大,切割速度加快,但在一般情况下脉冲间隙不能取的太小,
如果脉冲间隙取得太小,放电产物来不及排出,放电间隙来不及充分消电离,使得加工不稳
定,容易发生电弧放电致使工件表面烧伤和出现断丝;但是脉冲间隙也不适宜太大,否则会
使切割速度明显下降,严重时不能进给(加工无法正常进行,单板机数字不走),使加工变的
不稳定;一般情况下,减少脉冲间隙,表面粗糙度值提高,但是提高的幅度不大,此时切割
速度明显增大,同时表明,脉冲间隙对切割速度影响较大,对表面粗糙度影响较小。(注:加
工工件较厚时,为了保证加工的稳定,放电间隙要大,所以脉冲宽度和脉冲间隙都应取较大
值。)
5. 放电波形
线切割机床常用的两种波形是矩形波脉冲和分组脉冲。在相同的工艺条件下,分组脉冲常常
能获得比较好的加工效果,常用于精加工和薄工件加工。电流波形的前沿上升比较缓慢时,
电极丝损耗较小。但如果脉冲宽度很窄时,必须有陡的前沿才能进行有效加工。
矩形波加工效率高,加工范围广,加工稳定性好,属于快走丝线切割最常用的加工波形。
6. 极性效应(保留)
7. 进给速度
进给速度的条件对切割速度、加工精度和表面质量的影响很大。因此,调节预置进给速度应
紧密跟踪工件蚀除(排削)速度,以保持加工间隙恒定在最佳值上。这样可使有效放电状态
的比例加大,而开路和短路的比例减少,使切割速度达到给定加工条件下的最大值,同时还
能获得很好的加工精度和表面质量。
F. 数控电火花线切割的放电间隙是多少
电火花加工间隙状态的鉴别与检测方法
? 摘 要:现代工业控制已进入到智能控制阶段,为了获得被控对象准确的工作情况并对其进行控制,它要求更先进的检测作为前置支撑技术。本文就电火花加工(EDM)的智能控制,对检测环节提出一种新的检测间隙电压的方法和工作原理,并设计了试验装置。
1 引言 电火花加工 (EDM) 因其独特的优点和在模具制造中举足轻重的作用,使其加工过程控制最优化与加工设备智能化成为科技工作者的主攻方向之一。 智能控制的概念最早出现于60年代。智能控制系统具有自学习和自适应能力,能自主地调节自己的控制结构、参数方法,进行决策规划或广义问题求解,以完成任务。加工过程智能控制目前主要包括三个方面:(1) 专家控制;(2) 模糊控制;(3) 神经网络控制。 智能控制实质上是一种预测控制——预测模型、滚动优化和反馈校正。它把电火花加工控制从严格的数学模型束缚中解脱出来,将过程作为“黑箱”处理,完全撇开对系统的内部描述,用隶属函数来刻画和描述定性信息,达到模拟熟练操作者的思维方式,根据当前的加工状态和前一次的抉择来调整参数,进而实现提高加工效率和稳定加工过程的目的。因此,首要解决前提问题——“黑箱”的输入参数和输出参数是什么,以及需检测和控制什么参量,必须结合电火花加工的特殊工艺规律来决定。 进一步的研究表明,主轴伺服进给、电机提升(抬刀)、放电间隙调节是 EDM 的主要控制量。事实上至今 EDM 激励也没有令人满意的解释,对EDM 放电间隙状态的检测是 EDM 智能控制不可回避的难点。所以必须应用新的先进技术得到准确的放电间隙情况,给研究和实现 EDM 过程的智能控制提供前置技术支撑。
2 电火花加工过程的控制和间隙放电状态的鉴别 众所周知,电火花放电加工时,放电须是短时间的脉冲放电。持续时间一般为10-6~10-3s。如放电时间等于或大于10-2s,则转变为电弧放电,从而使加工不能正常进行。因此要实时地在微秒级或毫秒级对众多复杂的变化因素进行检测并加以控制。 电火花加工过程控制的目标是:(1) 确保避免电弧放电损伤工件,保持稳定的加工状态;(2) 满足加工表面粗糙度、精度等各种规格的参数;(3) 尽可能满足高速加工的要求。因此首先遇到的问题就是要有高灵敏度的 EDM 自动控制单元。 与其他传统加工方法相比,电火花加工过程是一个较慢的过程,因此它的控制目标函数就是在保证表面质量和加工精度的条件下,以最短的加工时间(最快的加工速度)来实现。电火花加工控制系统结构框图如图1所示。
图1 电火花加工控制系统结构框图
实现电火花加工,必须使工具电极和工件间维持合理的距离,在该距离范围内,既可满足脉冲电压不断击穿介质,产生火花放电,又可适应在火花通道熄灭后介质消电离(消除电离子影响)及排出蚀除产物的要求。这段距离称之为“加工间隙”或“放电间隙”。间隙是否合理,受到脉冲电压、火花通道的能量及介质的介电系数等因素的制约。一般情况下,电火花加工的放电间隙在数微米到数百微米范围内。且在一定时间范围内脉冲放电集中在某一区域;在另一段时间内,则应转移到另一区域。只有如此,才能避免积碳现象,进而避免发生电弧和局部烧伤。因此,放电间隙是控制的主要对象。目前在许多机床上采用间隙电压作为反映间隙大小的传感信号,当间隙偏大时,由于短路和短的击穿延时,U值也小。无论如何,随着间隙电压的增加,放电间隙也增大。这样,加工过程中不可连续测量的放电间隙大小就可用连续测量加工间隙电压的方法来获得。但是,间隙电压与其它控制参数之间的交互作用很大。因此准确检测电火花放电间隙状态已成为不可回避的问题。 研究电火花加工过程单个脉冲波形的“时态”有五种基本形态,即正常火花放电、过渡电弧(可恢复性不稳定电弧)、稳定电弧、短路、开路(空载)。它们的特点是: (1) 正常火花放电:放电期间放电电压波形上有高频杂波分量出现,峰值大,有击穿延时现象。而在形成火花放电过程中,电压电流波形平直,规律性整齐。见图2。
图2 正常火花放电电压、电流波形图
(2) 过渡电弧:放电期间放电电压波形上,高频杂波分量几乎没有,击穿延时也不明显,波形无规律。这种波形可通过伺服控制恢复为正常火花放电,也可因间隙状态变化而自行恢复为正常火花放电。因此它是作为理论研究提出的,实际加工控制过程中不需要专门测量(本文不考虑这一状态)。 (3) 稳定电弧(不可恢复烧伤性稳定电弧):在间隙放电条件恶劣的情况下,如深孔加工时,稳定电弧形成而烧伤工件,这时工具电极及工件表面都会形成局部凸包或凹坑,电压及电流波形都很光滑,形成烧弧后,如不擦除黑斑,加工过程不可能自行恢复正常。见图3。
图3 稳定电弧放电电压、电流波形图
(4) 短路:电压很低,电流波形光滑。虽然短路本身不蚀除工件,也不损伤电极,但在短路处造成了一个热点,当短路消除时易引发拉弧。 (5) 开路:间隙加工介质没有被击穿。 为了清晰地描述放电间隙状态,文中给出的间隙状态图是经过处理的。在实际电火花加工过程中,这五种类型都可能出现,甚至在一个脉冲单元中同时出现。短路、开路的情况好区别,本文不作详细说明。正常火花放电和稳定电弧放电这两种状态的电压、电流幅值特征较接近,如仅用电压和电流的幅值来区分是较困难的,因为它们的间隙电压和电流幅值差别小,而且随着工艺规准的变化还在一定范围内波动。 70年代以来的检测技术主要有两种:高频检测法和击穿延时法。由于光电技术的引入,我们采用新的方法——设置门槛电压法。从检测放电间隙电压入手,应用光电耦合器屏蔽干扰,采集信息接入 PC 机处理。
3 电火花放电间隙状态检测方法及工作原理 3.1 高频检测法 高频检测法是通过间隙电压上高频分量的检测来区分火花放电与电弧放电。在火花放电时,间隙电压存在着强而稳定的高频分量(频率从几兆到几十兆);而电弧放电时,间隙电压的高频分量很弱,甚至不存在。因此可将间隙电压上的高频信号进行提取、放大、比较,作为区分火花放电和电弧放电的依据。这种方法不仅可区分火花放电和电弧放电,还可将电弧放电进一步区分为稳定电弧放电或是过渡电弧放电,但难以对单个脉冲的放电状态进行判断,且电路复杂、稳定性较差。 3.2 击穿延时法 击穿延时法是根据火花放电时存在一定的击穿延时时间,而电弧放电时一般没有击穿延时时间而设计的。尽管它不能区分过渡电弧放电与稳定电弧放电,并且对单个脉冲内出现的放电状态转换不能有效地区分,但其优点是可对单个脉冲的放电状态进行判别,且检测电路为数字电路,抗干扰性及稳定性都很好,与电火花加工机床上的计算机控制系统连接也很方便。 3.3 设置门槛电压法 从前面放电间隙状态鉴别中可看到,正常火花放电与稳定电弧放电的单个脉冲是在实验室里被极精密的仪器测出来的。在实际应用中会出现各种干扰,正常火花放电和稳定电弧放电的电压、电流特性相似,难以区分。而且,即便被测到也没有标准可让计算机识别。采用设置门槛电压法可解决这个问题。 设置一个参考电压,介于电弧放电与火花放电之间。用放大器线性方法检测火花放电和电弧放电的电压值,利用光电耦合器使它们呈现正比关系。在正常放电电压时,光电耦合器(GD)基本处于截止,在电弧放电时基本处于饱和。如图 4 所示设置参考电平 Uref1。设置门槛电压法由此得名。由于光电耦合器的作用,不仅是正常火花放电和稳定电弧放电的判别变得简单,电路简化,还可大大抑制电路干扰,将机床强电系统与数字系统完全隔离分开。
图4 正常火花放电脉冲与电弧脉冲在光电耦合后输出的波形
a——正常火花放电脉冲输出, b——电弧脉冲输出
加工中,放电两极的脉冲电压值很高,达几十伏到几百伏,必须预处理电路对间隙电压分压。将衰减后的间隙电压通过光电隔离、运算放大后再输入到采样电路中。由于从安全角度考虑,电火花加工机床的一个电极接地,接地线又和交流电源的中线相通,因而除空间电磁场的耦合外,还有地线的直接耦合。EDM 放电间隙不仅是加工区,也是一个很强的高频电磁场干扰源,其频带范围以10~60MHz最强,实验证明,在最大电流的精加工中系统的干扰最强。要使 A/D 采样不会受到干扰,达到强电与弱电的隔离,放电间隙状态检测接口电路中的隔离采用线形光电隔离技术。 控制的目的是在稳定加工下尽量保持火花放电状态。前面把放电过程描述为四种基本状态:正常火花放电、稳定电弧放电、短路、开路。定时记录放电状态出现的时间,即用时间百分比反映这四种状态及其组合: 空载率:Ψd=∑td/∑ti
G. 线切割的间隙补偿计算
两种都可以的哦!
算法是钼丝的半径+放电间隙.
如钼丝0.14mm,算法就是:
0.07+0.02(放电间隙一般为单内边0.015-0.02)放电间隙就是0.09,当然要注意"左正容右负'
还有就是你编程序就直接算出来内-外+
H. 线切割放电间隙
线切割的放电间抄隙取决于放电状态,主要因素有
1 工作液的绝缘性能,绝缘性能大的工作介质放电间隙小,煤油比水的放电间隙小;
2 与电压有关,放电电压大,极间电场大,容易击穿,放电间隙也打;
3 工作液的使用时间,使用时间长的工作液,杂质较多,形成串联放电,放电间隙增大;
至于材料经过热处理后,是不会影响放电间隙的,因此在切割编程的时候放电间隙的补偿可以与没有热处理的一样。但是会影响加工过程的工件变形,尤其是零件尺寸比较大的时候,需要考虑。