如何制作一个字符设备
『壹』 linux用mknod怎么创建设备怎么用
首先要明白什么是设备文件,简单的我们说,操作系统与外部设备(入磁盘驱动器,打印机,modern,终端 等等)都是通过设备文件来进行通信的,在Unix/Linux系统与外部设备通讯之前,这个设备必须首先要有一个设备文件,设备文件均放在/dev目录下。
一般情况下在安装系统的时候系统自动创建了很多已检测到的设备的设备文件,但有时候我们也需要自己手动创建,命令行生成设备文件的方式有 insf,mksf,mknod等等
根据mknod命令的使用参数来看【mknod Name { b | c } Major Minor 】,使用mknod之前,至少要明白以下几点:
设备文件类型:分为块设备和字符设备。ls -l /dev 结果显示第一个字段有b*** 和 c****,这里即标识了块设备和字符设备。
字符设备文件----字符设备文件传送数据给设备的时候,一次传送一个字符,终端,打印机,绘图仪,modern等设备都经过字符设备文件传送数据
块设备---系统通过块设备文件存取一个设备的时候,先从内存中的buffer中读或写数据,而不是直接传送数据到物理磁盘,这种方式能有效的提高磁盘和CD-ROMS的I/O性能。磁盘和CD-ROMS即可以使用字符设备文件也可使用块设备文件。
主号和次号
主号:当在任意目录使用ls -l 时,结果的第5个字段就是主号,设备主号代表了这个设备使用的是哪个设备驱动程序
次号:次号是一个24位的十六进制数字,定义了设个设备在系统中的物理的位置
就拿我们常用的创建卷组来看:
先来看看mknod 命令,如果该设备文件你想放在一个特定的文件夹下当然就先创建文件夹
mknod 设备文件名[/dev/xyz] b/c 主号 次号
{ mkdir /dev/vg01
mknod /dev/vg01/group c 64 0X010000}
创建之后,就可以使用你想要创建的设备对于德创建命令了,如我现在的卷组的创建命令:
vgcreate /dev/vg01 /dev/dsk/c*t*d*
一直进行下去,之后的步骤根据不同的设备而不尽相同。
『贰』 linux用mknod怎么创建设备,创建了设备怎么用
mknod命令用于创建一个设备文件,即特殊文件
首先要明白什么是设备文件,简单的我们说 操作系统与外部设备(入磁盘驱动器,打印机,modern,终端 等等)都是通过设备文件来进行通信的,在Unix/Linux系统与外部设备通讯之前,这个设备必须首先要有一个设备文件,设备文件均放在/dev目录下
一般情况下在安装系统的时候系统自动创建了很多已检测到的设备的设备文件,但有时候我们也需要自己手动创建,命令行生成设备文件的方式有 insf,mksf,mknod等等
根据mknod命令的使用参数来看【mknod Name { b | c } Major Minor 】,使用mknod之前,至少要明白以下几点:
设备文件类型:分为块设备和字符设备。ls -l /dev 结果显示第一个字段有b*** 和 c****,这里即标识了块设备和字符设备。
字符设备文件----字符设备文件传送数据给设备的时候,一次传送一个字符,终端,打印机,绘图仪,modern等设备都经过字符设备文件传送数据
块设备---系统通过块设备文件存取一个设备的时候,先从内存中的buffer中读或写数据,而不是直接传送数据到物理磁盘,这种方式能有效的提高磁盘和CD-ROMS的I/O性能。磁盘和CD-ROMS即可以使用字符设备文件也可使用块设备文件。
主号和次号:
主号:当在任意目录使用ls -l 时,结果的第5个字段就是主号,设备主号代表了这个设备使用的是哪个设备驱动程序
次号:次号是一个24位的十六进制数字,定义了设个设备在系统中的物理的位置
就拿我们常用的创建卷组来看;
先来看看mknod 命令,如果该设备文件你想放在一个特定的文件夹下当然就先创建文件夹
mknod 设备文件名[/dev/xyz] b/c 主号 次号
{ mkdir /dev/vg01
mknod /dev/vg01/group c 64 0X010000
}
创建之后,就可以使用你想要创建的设备对于德创建命令了,如我现在的卷组的创建命令:
vgcreate /dev/vg01 /dev/dsk/c*t*d*
一直进行下去
之后的步骤根据不同的设备而不尽相同
『叁』 linux中什么是块设备和字符设备
块设备复是I/O设备中的一类,是制将信息存储在固定大小的块中,每个块都有自己的地址,还可以在设备的任意位置读取一定长度的数据。数据块的大小通常在512字节到32768字节之间。块设备的基本特征是每个块都能独立于其它块而读写。
字符设备是在I/O传输过程中以字符为单位进行传输的设备。在linux系统中,字符设备以特别文件方式在文件目录树中占据位置并拥有相应的结点。结点中的文件类型指明该文件是字符设备文件。可以使用与普通文件相同的文件操作命令对字符设备文件进行操作。
(3)如何制作一个字符设备扩展阅读:
在大多数的linux操作系统中,块设备只支持以块为单位的访问方式,如磁盘等。KYLIN支持以字符方式来访问块设备,即支持以字符为单位来读写磁盘等块设备。所以在/dev目录中的块设备,如磁盘等,均以字符设备的外观出现。
当一台字符型设备在硬件上与主机相连之后,必须为这台设备创建字符特别文件。linux操作系统的mknod命令被用来建立设备特别文件。
参考资料来源:
网络——块设备
网络——字符设备
『肆』 字符型设备驱动如何编译
字符设备驱动程序框架
1、写出open、write函数
2、告诉内核
1)、定义一个struct file_operations结构并填充好
static struct file_operations first_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_mole变量 */
.open = first_drv_open,
.write = first_drv_write,
};
2)、把struct file_operations结构体告诉内核
major = register_chrdev(0, "first_drv", &first_drv_fops); // 注册, 告诉内核
相关参数:第一个,设备号,0自动分配主设备号,否则为主设备号0-255
第二个:设备名
第二个:struct file_operations结构体
4)、register_chrdev由谁调用(入口函数调用)
static int first_drv_init(void)
5)、入口函数须使用内核宏来修饰
mole_init(first_drv_init);
mole_init会定义一个结构体,这个结构体里面有一个函数指针指向first_drv_init这个函数,当我们加载或安装一个驱动时,内核会自动找到这个结构体,然后调用里面的函数指针,这个函数指针指向first_drv_init这个函数,first_drv_init这个函数就是把struct file_operations结构体告诉内核
6)、有入口函数就有出口函数
mole_exit(first_drv_exit);
最后加上协议
MODULE_LICENSE("GPL");
3、mdev根据系统信息自动创建设备节点:
每次写驱动都要手动创建设备文件过于麻烦,使用设备管理文件系统则方便很多。在2.6的内核以前一直使用的是devfs,但是它存在许多缺陷。它创建了大量的设备文件,其实这些设备更本不存在。而且设备与设备文件的映射具有不确定性,比如U盘即可能对应sda,又可能对应sdb。没有足够的主/辅设备号。2.6之后的内核引入了sysfs文件系统,它挂载在/sys上,配合udev使用,可以很好的完成devfs的功能,并弥补了那些缺点。(这里说一下,当今内核已经使用netlink了)。
udev是用户空间的一个应用程序,在嵌入式中用的是mdev,mdev在busybox中。mdev是udev的精简版。
首先在busybox中添加支持mdev的选项:
Linux System Utilities --->
[*] mdev
[*] Support /etc/mdev.conf
[*] Support subdirs/symlinks
[*] Support regular expressions substitutions when renaming device
[*] Support command execution at device addition/removal
然后修改/etc/init.d/rcS:
echo /sbin/mdev > /proc/sys/kernel/hotplug
/sbin/mdev -s
执行mdev -s :以‘-s’为参数调用位于 /sbin目录写的mdev(其实是个链接,作用是传递参数给/bin目录下的busybox程序并调用它),mdev扫描 /sys/class 和 /sys/block 中所有的类设备目录,如果在目录中含有名为“dev”的文件,且文件中包含的是设备号,则mdev就利用这些信息为这个设备在/dev 下创建设备节点文件。一般只在启动时才执行一次 “mdev -s”。
热插拔事件:由于启动时运行了命 令:echo /sbin/mdev > /proc/sys/kernel/hotplug ,那么当有热插拔事件产生时,内核就会调用位于 /sbin目录的mdev。这时mdev通过环境变量中的 ACTION 和 DEVPATH,来确定此次热插拔事件的动作以及影响了/sys中的那个目录。接着会看看这个目录中是否“dev”的属性文件,如果有就利用这些信息为 这个设备在/dev 下创建设备节点文件
重新打包文件系统,这样/sys目录,/dev目录就有东西了
下面是create_class的原型:
#define class_create(owner, name) /
({ /
static struct lock_class_key __key; /
__class_create(owner, name, &__key); /
})
extern struct class * __must_check __class_create(struct mole *owner,
const char *name,
struct lock_class_key *key);
class_destroy的原型如下:
extern void class_destroy(struct class *cls);
device_create的原型如下:
extern struct device *device_create(struct class *cls, struct device *parent,
dev_t devt, void *drvdata,
const char *fmt, ...)
__attribute__((format(printf, 5, 6)));
device_destroy的原型如下:
extern void device_destroy(struct class *cls, dev_t devt);
具体使用如下,可参考后面的实例:
static struct class *firstdrv_class;
static struct class_device *firstdrv_class_dev;
firstdrv_class = class_create(THIS_MODULE, "firstdrv");
firstdrv_class_dev = class_device_create(firstdrv_class, NULL, MKDEV(major, 0), NULL, "xyz"); /* /dev/xyz */
class_device_unregister(firstdrv_class_dev);
class_destroy(firstdrv_class);
下面再来看一下应用程序如何找到这个结构体的
在应用程序中我们使用open打开一个设备:如:open(/dev/xxx, O_RDWR);
xxx有一个属性,如字符设备为c,后面为读写权限,还有主设备名、次设备名,我们注册时 通过register_chrdev(0, "first_drv", &first_drv_fops)(有主设备号,设备名,struct file_operations结构体)将first_drv_fops结构体注册到内核数组chrdev中去的,结构体中有open,write函数,那么应用程序如何找到它的,事实上是根据打开的这个文件的属性中的设备类型及主设备号在内核数组chrdev里面找到我们注册的first_drv_fops,
实例代码:
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
static struct class *firstdrv_class;
static struct class_device *firstdrv_class_dev;
volatile unsigned long *gpfcon = NULL;
volatile unsigned long *gpfdat = NULL;
static int first_drv_open(struct inode *inode, struct file *file)
{
//printk("first_drv_open\n");
/* 配置GPF4,5,6为输出 */
*gpfcon &= ~((0x3<<(4*2)) | (0x3<<(5*2)) | (0x3<<(6*2)));
*gpfcon |= ((0x1<<(4*2)) | (0x1<<(5*2)) | (0x1<<(6*2)));
return 0;
}
static ssize_t first_drv_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos)
{
int val;
//printk("first_drv_write\n");
_from_user(&val, buf, count); // _to_user();
if (val == 1)
{
// 点灯
*gpfdat &= ~((1<<4) | (1<<5) | (1<<6));
}
else
{
// 灭灯
*gpfdat |= (1<<4) | (1<<5) | (1<<6);
}
return 0;
}
static struct file_operations first_drv_fops = {
.owner = THIS_MODULE, /* 这是一个宏,推向编译模块时自动创建的__this_mole变量 */
.open = first_drv_open,
.write = first_drv_write,
};
int major;
static int first_drv_init(void)
{
major = register_chrdev(0, "first_drv", &first_drv_fops); // 注册, 告诉内核
firstdrv_class = class_create(THIS_MODULE, "firstdrv");
firstdrv_class_dev = class_device_create(firstdrv_class, NULL, MKDEV(major, 0), NULL, "xyz"); /* /dev/xyz */
gpfcon = (volatile unsigned long *)ioremap(0x56000050, 16);
gpfdat = gpfcon + 1;
return 0;
}
static void first_drv_exit(void)
{
unregister_chrdev(major, "first_drv"); // 卸载
class_device_unregister(firstdrv_class_dev);
class_destroy(firstdrv_class);
iounmap(gpfcon);
}
mole_init(first_drv_init);
mole_exit(first_drv_exit);
MODULE_LICENSE("GPL");
编译用Makefile文件
KERN_DIR = /work/system/linux-2.6.22.6
all:
make -C $(KERN_DIR) M=`pwd` moles
clean:
make -C $(KERN_DIR) M=`pwd` moles clean
rm -rf moles.order
obj-m += first_drv.o
测试程序:
#include
#include
#include
#include
/* firstdrvtest on
* firstdrvtest off
*/
int main(int argc, char **argv)
{
int fd;
int val = 1;
fd = open("/dev/xyz", O_RDWR);
if (fd < 0)
{
printf("can't open!\n");
}
if (argc != 2)
{
printf("Usage :\n");
printf("%s \n", argv[0]);
return 0;
}
if (strcmp(argv[1], "on") == 0)
{
val = 1;
}
else
{
val = 0;
}
write(fd, &val, 4);
return 0;
}
『伍』 在虚拟机linux操作系统上怎么编写一个简单的字符设备驱动程序
下载 virtualbox 下载一个 linux iso
用virtualbox 建立虚拟系统 配置好 加载iso 启动安装
VMware安装完毕后,利用它可以建立多个虚拟机,每新建一个虚拟机,就会要求你建立一个配置文件。这个配置文件实际上相当于新电脑的“硬件配置”,你可以在配置文件中决定虚拟机的硬盘如何配置,内存多大.准备运行哪种操作系统,是否有网络等。配置Linux虚拟机的步骤如下。
(1)选择File菜单下的“New Virtual Machine”出现新虚拟机向导后单击“下一步”,选择“Typical”典型安装。
(2)再单击“下一步”,在选择操作系统界面的“Guest Operation System”中选择 “Linux”,然后单击Version对应的下拉菜单选择具体的Linux版本, 此处我们选择“Red Hat LinuX”。
(3)单击“下一步”进入安装目录选择界面。该界面上面的文本框是系统的名字,保持默认值即可,下面的文本框需要选择虚拟机操作系统的安装位置。
(4)根据需要选择好后,单击“下一步”按钮,出现设置虚拟机内存大小的界面。Linux9.O对内存的要求是:文本模式至少需要64MB;图形化模式至少需要128MB,推荐使用192MB。此处我们选择192MB:
(5)单击“下一步”按钮进入网络连接方式选择界面。VMware有四种网络设置方式,一般来说,Bridged方式使虚拟机就像网络内一台独立的计算机一样,最为方便好用(四种连网方式的区别大家可参考VMware的有关资料)。在此、我们选择Brided方式。
(6)单击“下一步”按钮进入虚拟磁盘的设置界面。 这里有三种方式(Create a new virtual disk、Use an existing virtual disk、Use a physical disk)可供选择、建议初学者选择“Create a new Virtual disk”,其含义是新建一个虚拟磁盘,该虚拟磁盘只是主机—卜的一个独立文件。
(7)在“下一步”中设置磁盘大小。在此、我们采用默认的4GB。
(8)单击“下一步”进入文件存放路径选择界面。
在此界面可单击Browse按钮进行设置。此处我们使用默认值,单击“完成”按钮。
至此,完成一个虚拟机的配置。
『陆』 如何写一个简单的字符设备驱动
下载 virtualbox 下载一个 linux iso
用virtualbox 建立虚拟系统 配置好 加载iso 启动安装
VMware安装完毕后,利用它可内以建立多个容虚拟机,每新建一个虚拟机,就会要求你建立一个配置文件。这个配置文件实际上相当于新电脑的“硬件配置”,你可以在配置文件中决定虚拟机的硬盘如何配置,内存多大.准备运行哪种操作系统,是否有网络等。配置Linux虚拟机的步骤如下。
(1)选择File菜单下的“New Virtual Machine”出现新虚拟机向导后单击“下一步”,选择“Typical”典型安装。
(2)再单击“下一步”,在选择操作系统界面的“Guest Operation System”中选择 “Linux”,然后单击Version对应的下拉菜单选择具体的Linux版本, 此处我们选择“Red Hat LinuX”。
『柒』 字符设备怎么调用device
C库中通过open/read/write/seek等来操作抄文袭件,所谓字符设备驱动,简单来说就是实现这几个函数的具体内容,linux能把设备抽象为文件,用户调用open/read/write/seek对抽象的文件进行操作就可以操作实际硬件设备(或抽象的设备)。所以字符设备驱动的重点,在于编写内核空间的open/read/write/seek等函数。
可见,字符设备并不是一个完整的main函数,其框架更像是一个支持fileOperations的lib。用户空间通过系统调用(int 80,软中断)来使用这个lib,lib之间的调用通过内核符号表来完成解析。
『捌』 编写一个简单的字符设备驱动程序。要求该字符设备包括scull_open() scull_write() scull_read() scull_i
|第一部分 字符设备驱动程序
1.1 函数scull_open()
int scull_open(struct inode *inode,struct file *filp) {
MOD_INC_USE_COUNT; // 增加该模块的用户数目
printk(“This chrdev is in open\n”);
return 0;
}
1.2 函数scull_write()
int scull_write(struct inode *inode,struct file *filp,const char *buffer,int count) {
if(count < 0)
return –EINVAL;
if(scull.usage || scull.new_msg)
return –EBUSY;
scull.usage = 1;
kfree(scull.data);
data = kmalloc(sizeof(char)*(count+1),GFP_KERNEL);
if(!scull.data) {
return –ENOMEM;
}
_from_user(scull.data,buffer,count + 1);
scull.usage = 0;
scull.new_msg = 1;
return count;
}
1.3 函数scull_read()
int scull_read(struct inode *inode,struct file *filp,char *buffer,int count) {
int length;
if(count < 0)
return –EINVAL;
if(scull.usage)
return –EBUSY;
scull.usage = 1;
if(scull.data == 0)
return 0;
length = strlen(scull.data);
if(length < count)
count = length;
_to_user(buf,scull.data,count + 1);
scull.new_msg = 0;
scull.usage = 0;
return count;
}
1.4 函数scull_ioctl()
#include <linux/ioctl.h>
#define SCULL_MAJOR 0
#define SCULL_MAGIC SCULL_MAJOR
#define SCULL_RESET _IO(SCULL_MAGIC,0) // reset the data
#define SCULL_QUERY_NEW_MSG _IO(SCULL_MAGIC,1) // check for new message
#define SCULL_QUERY_MSG_LENGTH _IO(SCULL_MAGIC,2) //get message length
#define IOC_NEW_MSG 1
static int usage,new_msg; // control flags
static char *data;
int scull_ioctl(struct inode *inode,struct file *filp,unsigned long int cmd,unsigned long arg) {
int ret=0;
switch(cmd) {
case SCULL_RESET:
kfree(data);
data = NULL;
usage = 0;
new_msg = 0;
break;
case SCULL_QUERY_NEW_MSG:
if(new_msg)
return IOC_NEW_MSG;
break;
case SCULL_QUERY_MSG_LENGTH:
if(data == NULL){
return 0;
}
else {
return strlen(data);
}
break;
default:
return –ENOTTY;
}
return ret;
}
1.5 函数scull_release()
void scull_release(struct inode *inode,struct file *filp) {
MOD_DEC_USE_COUNT; // 该模块的用户数目减1
printk(“This chrdev is in release\n”);
return 0;
#ifdef DEBUG
printk(“scull_release(%p,%p)\n”,inode,filp);
#endif
}
1.6 测试函数
在该字符设备驱动程序编译加载后,再在/dev目录下创建字符设备文件chrdev,使用命令: #mknod /dev/chrdev c major minor ,其中“c”表示chrdev是字符设备,“major”是chrdev的主设备号。(该字符设备驱动程序编译加载后,可在/proc/devices文件中获得主设备号,或者使用命令: #cat /proc/devices | awk ”\\$2==”chrdev\”{ print\\$1}” 获得主设备号)
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include “chardev.h” // 见后面定义
void write_proc(void);
void read_proc(void);
main(int argc,char **argv) {
if(argc == 1) {
puts(“syntax: testprog[write|read]\n”);
exit(0);
}
if(!strcmp(argv[1],“write”)) {
write_porc();
}
else if(!strcmp(argv[1],“read”)) {
read_proc();
}
else {
puts(“testprog: invalid command!\n”);
}
return 0;
}
void write_proc() {
int fd,len,quit = 0;
char buf[100];
fd = open(“/dev/chrdev”,O_WRONLY);
if(fd <= 0) {
printf(“Error opening device for writing!\n”);
exit(1);
}
while(!quit) {
printf(“\n Please write into:”);
gets(buf);
if(!strcmp(buf,“exit”))
quit = 1;
while(ioctl(fd,DYNCHAR_QUERY_NEW_MSG))
usleep(100);
len = write(fd,buf,strlen(buf));
if(len < 0) {
printf(“Error writing to device!\n”);
close(fd);
exit(1);
}
printf(“\n There are %d bytes written to device!\n”,len);
}
close(fd);
}
void read_proc() {
int fd,len,quit = 0;
char *buf = NULL;
fd=open(“/dev/chrdev”,O_RDONLY);
if(fd < 0) {
printf(“Error opening device for reading!\n”);
exit(1);
}
while(!quit) {
printf(“\n Please read out:”);
while(!ioctl(fd,DYNCHAR_QUERY_NEW_MSG))
usleep(100);
// get the msg length
len = ioctl(fd,DYNCHAR_QUERY_MSG_LENGTH,NULL);
if(len) {
if(buf != NULL)
free(buf);
buf = malloc(sizeof(char)*(len+1));
len = read(fd,buf,len);
if(len < 0) {
printf(“Error reading from device!\n”);
}
else {
if(!strcmp(buf,“exit”) {
ioctl(fd,DYNCHAR_RESET); // reset
quit = 1;
}
else
printf(“%s\n”,buf);
}
}
}
free(buf);
close(fd);
}
// 以下为chrdev.h定义
#ifndef _DYNCHAR_DEVICE_H
#define _DYNCHAR_DEVICE_H
#include <linux/ioctl.h>
#define DYNCHAR_MAJOR 42
#define DYNCHAR_MAGIC DYNCHAR_MAJOR
#define DYNCHAR_RESET _IO(DYNCHAR_MAGIC,0) // reset the data
#define DYNCHAR_QUERY_NEW_MSG _IO(DYNCHAR_MAGIC,1) // check for new message
#define DYNCHAR_QUERY_MSG_LENGTH _IO(DYNCHAR_MAGIC,2) // get message length
#define IOC_NEW_MSG 1
#endif
『玖』 如何写一个字符驱动
file_operations结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。
2.简单驱动程序的编写:
(1)包含一些基本的头文件。
(2)编写一些功能函数,比如read(),write()等。这些函数被调用时系统进入核心态。
(3)定义struct file_operations结构的对象,填充结构体。结构体中功能的顺序不能改变,若一些功能没有实现就用NULL填充,已经实现的功能如read()、write()分别添加到对应的位置。这步实现的是函数的注册。到这里驱动程序的主体可以说是写好了。现在需要把驱动程序嵌入内核。
(4)注册设备驱动程序,使用register_chrdev注册字符型设备。函数原型为:int register_chrdev(0, "test_name", &test_file_operations)函数返回主设备号,若注册成功返回值大于0。第一个参数:主设备号。第二个参数:注册的设备名。第三个参数:结构体名(设备相关操作方式,驱动程序实际执行操作的函数的指针)。这个函数由int init_mole(void)函数调用,这个函数在系统启动时注册到内核时调用。
(5)在用rmmod卸载模块时,cleanup_mole函数被调用,执行unregister_chrdev()释放字符设备在系统字符设备表中占有的表项,到这里基本就编写完成了。一个简单的字符设备可以说写好了。
3.编译$ gcc -O2 -DMODULE -D__KERNEL__ -c test.o test.c
得到文件test.o就是一个设备驱动程序。
如果设备驱动程序有多个文件,把每个文件按上面的命令行编译,然后
ld -r file1.o file2.o -o molename
驱动程序已经编译好了,现在把它安装到系统中去。
$ insmod -f test.o
安装成功在/proc/devices文件中就可以看到设备test,并可以看到主设备号。要卸载运行:
$ rmmod test
4.创建设备节点