锻压加工为什么提高零件性能
㈠ 请问锻造对金属组织、性能的影响与锻件缺陷有哪些
锻件的缺陷包括表面缺陷和内部缺陷。有的锻件缺陷会影响后续工序的加工质量,有的则严重影响锻件的性能,降低所制成品件的使用寿命,甚至危及安全。因此,为提高锻件质量,避免锻件缺陷的产生,应采取相应的工艺对策,同时还应加强生产全过程的质量控制。本章概要介绍三方面的问题:锻造对金属组织、性能的影响与锻件缺陷;锻件质量检验的内容和方法;锻件质量分析的一般过程。
(一)锻造对金属组织和性能的影响锻造生产中,除了必须保证锻件所要求的形状和尺寸外,还必须满足零件在使用过程中所提出的性能要求,其中主要包括:强度指针、塑性指针、冲击韧度、疲劳强度、断裂韧度和抗应力腐蚀性能等,对高温工作的零件,还有高温瞬时拉伸性能、持久性能、抗蠕变性能和热疲劳性能等。锻造用的原材料是铸锭、轧材、挤材和锻坯。而轧材、挤材和锻坯分别是铸锭经轧制、挤压及锻造加工后形成的半成品。锻造生产中,采用合理的工艺和工艺参数,可以通过下列几方面来改善原材料的组织和性能:1)打碎柱状晶,改善宏观偏析,把铸态组织变为锻态组织,并在合适的温度和应力条件下,焊合内部孔隙,提高材料的致密度;2)铸锭经过锻造形成纤维组织,进一步通过轧制、挤压、模锻,使锻件得到合理的纤维方向分布;3)控制晶粒的大小和均匀度;4)改善第二相(例如:莱氏体钢中的合金碳化物)的分布;5)使组织得到形变强化或形变相变强化等。由于上述组织的改善,使锻件的塑性、冲击韧度、疲劳强度及持久性能等也随之得到了提高,然后通过零件的最后热处理就能得到零件所要求的硬度、强度和塑性等良好的综合性能。但是,如果原材料的质量不良或所采用的锻造工艺不合理,则可能产生锻件缺陷,包括表面缺陷、内部缺陷或性能不合格等。
(二)原材料对锻件质量的影响原材料的良好质量是保证锻件质量的先决条件,如原材料存在缺陷,将影响锻件的成形过程及锻件的最终质量。如原材料的化学元素超出规定的范围或杂质元素含量过高,对锻件的成形和质量都会带来较大的影响,例如:S、B、Cu、Sn等元素易形成低熔点相,使锻件易出现热脆。为了获得本质细晶粒钢,钢中残余铝含量需控制在一定范围内,例如Al酸0.02%~0.04%(质量分数)。含量过少,起不到控制晶粒长大的作用,常易使锻件的本质晶粒度不合格;含铝量过多,压力加工时在形成纤维组织的条件下易形成木纹状断口、撕痕状断口等。又如,在1Cr18Ni9Ti奥氏体不锈钢中,Ti、Si、Al、Mo的含量越多,则铁素体相越多,锻造时愈易形成带状裂纹,并使零件带有磁性。如原材料内存在缩管残余、皮下起泡、严重碳化物偏析、粗大的非金属夹杂物(夹渣)等缺陷,锻造时易使锻件产生裂纹。原材料内的树枝状晶、严重疏松、非金属夹杂物、白点、氧化膜、偏析带及异金属混人等缺陷,易引起锻件性能下降。原材料的表面裂纹、折叠、结疤、粗晶环等易造成锻件的表面裂纹。
(三)锻造工艺过程对锻件质量的影响锻造工艺过程一般由以下工序组成,即下料、加热、成形、锻后冷却、酸洗及锻后热处理。锻造过程中如果工艺不当将可能产生一系列的锻件缺陷。加热工艺包括装炉温度、加热温度、加热速度、保温时间、炉气成分等。如果加热不当,例如加热温度过高和加热时间过长,将会引起脱碳、过热、过烧等缺陷。对于断面尺寸大及导热性差、塑性低的坯料,若加热速度太快,保温时间太短,往往使温度分布不均匀,引起热应力,并使坯料发生开裂。锻造成形工艺包括变形方式、变形程度、变形温度、变形速度、应力状态、工模具的情兄和润滑条件等,如果成形工艺不当,将可能引起粗大晶粒、晶粒不均、各种裂纹、折叠。寒流、涡流、铸态组织残留等。锻后冷却过程中,如果工艺不当可能引起冷却裂纹、白点、网状碳化物等。
(四)锻件组织对最终热处理后的组织和性能的影响奥氏体和铁素体耐热不锈钢、高温合金、铝合金、镁合金等在加热和冷却过程中,没有同素异构转变的材料,以及一些铜合金和钛合金等,在锻造过程中产生的组织缺陷用热处理的办法不能改善。在加热和冷却过程中有同素异构转变的材料,如结构钢和马氏体不锈钢等,由于锻造工艺不当引起的某些组织缺陷或原材料遗留的某些缺陷,对热处理后的锻件质量有很大影响。现举例说明如下:
1)有些锻件的组织缺陷,在锻后热处理时可以得到改善,锻件最终热处理后仍可获得满意的组织和性能。例如,在一般过热的结构钢锻件中的粗晶和魏氏组织,过共析钢和轴承钢由于冷却不当引起的轻微的网状碳化物等。
2)有些锻件的组织缺陷,用正常的热处理较难消除,需用高温正火、反复正火、低温分解、高温扩散退火等措施才能得到改善。例如,低倍粗晶、9Cr18不锈钢的孪晶碳化物等。
3)有些锻件的组织缺陷,用一般热处理工艺不能消除,结果使最终热处理后的锻件性能下降,甚至不合格。例如,严重的石状断口和棱面断口、过烧、不锈钢中的铁素体带、莱氏体高合金工具钢中的碳化物网和带等。
4)有些锻件的组织缺陷,在最终热处理时将会进一步发展,甚至引起开裂。例如,合金结构钢锻件中的粗晶组织,如果锻后热处理时未得到改善,在碳、氮共渗和淬火后常引起马氏体针粗大和性能不合格;高速钢中的粗大带状碳化物,淬火时常引起开裂。锻造过程中常见的缺陷及其产生原因在第二章中将具体介绍。应当指出,各种成形方法中的常见缺陷和各类材料锻件的主要缺陷都是有其规律的。不同成形方法,由于其受力情况不同,应力应变特点不一样,因而可能产生的主要缺陷也是不一样的。例如,坯料镦粗时的主要缺陷是侧表面产生纵向或45°方向的裂纹,锭料镦粗后上、下端常残留铸态组织等;矩形截面坯料拔长时的主要缺陷是表面的横向裂纹和角裂,内部的对角线裂纹和横向裂纹;开式模锻时的主要缺陷则是充不满、折叠和错移等。各主要成形工序中常见的缺陷将在第四章中详细介绍。不同种类的材料,由于其成分、组织不同,在加热、锻造和冷却过程中,其组织变化和力学行为也不同,因而锻造工艺不当时,可能产生的缺陷也有其特殊性。例如,莱氏体高合金工具钢锻件的缺陷主要是碳化物颗粒粗大、分布不均匀和裂纹,高温合金锻件的缺陷主要是粗晶和裂纹;奥氏体不锈钢锻件的缺陷主要是晶间贫铬,抗晶间腐蚀能力下降,铁素体带状组织和裂纹等;铝合金锻件的缺陷主要是粗晶、折叠、涡流、穿流等。
㈡ 锻压的目的
锻压是锻造和冲压的合称,是利用锻压机械的锤头、砧块、冲头或通过模具对坯料施加压力,使之产生塑性变形,从而获得所需形状和尺寸的制件的成形加工方法。
在锻造加工中,坯料整体发生明显的塑性变形,有较大量的塑性流动;在冲压加工中,坯料主要通过改变各部位面积的空间位置而成形,其内部不出现较大距离的塑性流动。锻压主要用于加工金属制件,也可用于加工某些非金属,如工程塑料、橡胶、陶瓷坯、砖坯以及复合材料的成形等。
锻压和冶金工业中的轧制、拔制等都属于塑性加工,或称压力加工,但锻压主要用于生产金属制件,而轧制、拔制等主要用于生产板材、带材、管材、型材和线材等通用性金属材料。
人类在新石器时代末期,已开始以锤击天然红铜来制造装饰品和小用品。中国约在公元前2000多年已应用冷锻工艺制造工具,如甘肃武威皇娘娘台齐家文化遗址出土的红铜器物,就有明显的锤击痕迹。商代中期用陨铁制造武器,采用了加热锻造工艺。春秋后期出现的块炼熟铁,就是经过反复加热锻造以挤出氧化物夹杂并成形的。
最初,人们靠抡锤进行锻造,后来出现通过人拉绳索和滑车来提起重锤再自由落下的方法锻打坯料。14世纪以后出现了畜力和水力落锤锻造。
1842年,英国的内史密斯制成第一台蒸汽锤,使锻造进入应用动力的时代。以后陆续出现锻造水压机、电机驱动的夹板锤、空气锻锤和机械压力机。夹板锤最早应用于美国内战(1861~1865)期间,用以模锻武器的零件,随后在欧洲出现了蒸汽模锻锤,模锻工艺逐渐推广。到19世纪末已形成近代锻压机械的基本门类。
20世纪初期,随着汽车开始大量生产,热模锻迅速发展,成为锻造的主要工艺。20世纪中期,热模锻压力机、平锻机和无砧锻锤逐渐取代了普通锻锤,提高了生产率,减小了振动和噪声。随着锻坯少无氧化加热技术、高精度和高寿命模具、热挤压,成形轧制等新锻造工艺和锻造操作机、机械手以及自动锻造生产线的发展,锻造生产的效率和经济效果不断提高。
冷锻的出现先于热锻。早期的红铜、金、银薄片和硬币都是冷锻的。冷锻在机械制造中的应用到20世纪方得到推广,冷镦、冷挤压、径向锻造、摆动辗压等相继发展,逐渐形成能生产不需切削加工的精密制件的高效锻造工艺。
早期的冲压只利用铲、剪、冲头、手锤、砧座等简单工具,通过手工剪切、冲孔、铲凿、敲击使金属板材(主要是铜或铜合金板等)成形,从而制造锣、铙、钹等乐器和罐类器具。随着中、厚板材产量的增长和冲压液压机和机械压力机的发展,冲压加工也在19世纪中期开始机械化。
1905年美国开始生产成卷的热连轧窄带钢,1926年开始生产宽带钢,以后又出现冷连轧带钢。同时,板、带材产量增加,质量提高,成本降低。结合船舶、铁路车辆、锅炉、容器、汽车、制罐等生产的发展,冲压已成为应用最广泛的成形工艺之一。
锻压主要按成形方式和变形温度进行分类。按成形方式锻压可分为锻造和冲压两大类;按变形温度锻压可分为热锻压、冷锻压、温锻压和等温锻压等。
热锻压是在金属再结晶温度以上进行的锻压。提高温度能改善金属的塑性,有利于提高工件的内在质量,使之不易开裂。高温度还能减小金属的变形抗力,降低所需锻压机械的吨位。但热锻压工序多,工件精度差,表面不光洁,锻件容易产生氧化、脱碳和烧损。
冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶温度下的锻压称为温锻压。温锻压的精度较高,表面较光洁而变形抗力不大。
在常温下冷锻压成形的工件,其形状和尺寸精度高,表面光洁,加工工序少,便于自动化生产。许多冷锻、冷冲压件可以直接用作零件或制品,而不再需要切削加工。但冷锻时,因金属的塑性低,变形时易产生开裂,变形抗力大,需要大吨位的锻压机械。
等温锻压是在整个成形过程中坯料温度保持恒定值。等温锻压是为了充分利用某些金属在等一温度下所具有的高塑性,或是为了获得特定的组织和性能。等温锻压需要将模具和坯料一起保持恒温,所需费用较高,仅用于特殊的锻压工艺,如超塑成形。
锻压可以改变金属组织,提高金属性能。铸锭经过热锻压后,原来的铸态疏松、孔隙、微裂等被压实或焊合;原来的枝状结晶被打碎,使晶粒变细;同时改变原来的碳化物偏析和不均匀分布,使组织均匀,从而获得内部密实、均匀、细微、综合性能好、使用可靠的锻件。锻件经热锻变形后,金属是纤维组织;经冷锻变形后,金属晶体呈有序性。
锻压是使金属进行塑性流动而制成所需形状的工件。金属受外力产生塑性流动后体积不变,而且金属总是向阻力最小的部分流动。生产中,常根据这些规律控制工件形状,实现镦粗拔长、扩孔、弯曲、拉深等变形。
锻压出的工件尺寸精确、有利于组织批量生产。模锻、挤压、冲压等应用模具成形的尺寸精确、稳定。可采用高效锻压机械和自动锻压生产线,组织专业化大批量或大量生产。
锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。常用的锻压机械有锻锤、液压机和机械压力机。锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。
未来锻压工艺将向提高锻压件的内在质量、发展精密锻造和精密冲压技术、研制生产率和自动化程度更高的锻压设备和锻压生产线、发展柔性锻压成形系统、发展新型锻压材料和锻压加工方法等方面发展。
提高锻压件的内在质量,主要是提高它们的机械性能(强度、塑性、韧性、疲劳强度)和可靠度。这需要更好地应用金属塑性变形理论;应用内在质量更好的材料;正确进行锻前加热和锻造热处理;更严格和更广泛地对锻压件进行无损探伤。
少、无切削加工是机械工业提高材料利用率、提高劳动生产率和降低能源消耗的最重要的措施和方向。锻坯少、无氧化加热,以及高硬、耐磨、长寿模具材料和表面处理方法的发展,将有利于精密锻造、精密冲压的扩大应用。
㈢ 为什么重要的机器零部件都要通过锻压加工生产
也有冷锻好像,锻压加工的零件组织状态和应力集中情况相对铸造要好得多,锻压的工艺程序比铸造方便一些吧可能,而且重要的机器零部件大都以钢为材料,钢的锻压性能好
㈣ 为何机械零件的重要受力件大都采用锻造成形
1、重要受力部件经过受力分析后就要确定所选用材质,如果选择钢件材质,则专需要锻属造后再进行机械加工。这主要是为了消除应力。
2、受力部件本身要受到设计要求的机械载荷,再加上制造过程中产生的内部应力,在结构薄弱处容易发生断裂。
3、锻造的目的是使金属内部晶粒细化,从而消除钢材毛胚内部的应力,同时防止后续加工中的零件变形,晶粒细化一定程度上还可以增强金属的抗疲劳强度。
4、为了最大程度减小应力,在重要受力件加工后期还需要进行热处理。
㈤ 锻压的特性
锻压的特点是:
锻压可以改变金属组织,提高金属性能。铸锭经过热锻压后,原来的铸态疏松、孔隙、微裂等被压实或焊合;原来的枝状结晶被打碎,使晶粒变细;同时改变原来的碳化物偏析和不均匀分布,使组织均匀,从而获得内部密实、均匀、细微、综合性能好、使用可靠的锻件。锻件经热锻变形后,金属是纤维组织;经冷锻变形后,金属晶体呈有序性。
锻压是使金属进行塑性流动而制成所需形状的工件。金属受外力产生塑性流动后体积不变,而且金属总是向阻力最小的部分流动。生产中,常根据这些规律控制工件形状,实现镦粗拔长、扩孔、弯曲、拉深等变形。
锻压出的工件尺寸精确、有利于组织批量生产。模锻、挤压、冲压等应用模具成形的尺寸精确、稳定。可采用高效锻压机械和自动锻压生产线,组织专业化大批量或大量生产。
锻压的生产过程包括成形前的锻坯下料、锻坯加热和预处理;成形后工件的热处理、清理、校正和检验。常用的锻压机械有锻锤、液压机和机械压力机。锻锤具有较大的冲击速度,利于金属塑性流动,但会产生震动;液压机用静力锻造,有利于锻透金属和改善组织,工作平稳,但生产率低;机械压力机行程固定,易于实现机械化和自动化。未来锻压工艺将向提高锻压件的内在质量、发展精密锻造和精密冲压技术、研制生产率和自动化程度更高的锻压设备和锻压生产线、发展柔性锻压成形系统、发展新型锻压材料和锻压加工方法等方面发展。
提高锻压件的内在质量,主要是提高它们的机械性能(强度、塑性、韧性、疲劳强度)和可靠度。这需要更好地应用金属塑性变形理论;应用内在质量更好的材料;正确进行锻前加热和锻造热处理;更严格和更广泛地对锻压件进行无损探伤。
少、无切削加工是机械工业提高材料利用率、提高劳动生产率和降低能源消耗的最重要的措施和方向。锻坯少、无氧化加热,以及高硬、耐磨、长寿模具材料和表面处理方法的发展,将有利于精密锻造、精密冲压的扩大应用。
㈥ 为何锻件质量优于铸件和焊接件
你好,锻件是金属来在固态加自热后通过锻压成形的。它要求金属要有良好的热塑性(也叫锻造性},一般锻件均为钢件,它的强度高、塑性好,适合于制造受力大,要求高的重要零部件。如螺栓、轴类、齿轮等。
铸件金属是在液态浇注到铸型内而成形的。它要求液态金属有良好的流动性和填充性等(也叫铸造性),钢铁铸件中分为铸钢和铸铁两种,铸铁件含碳量比钢高,其强度较比钢低,塑性较差,一般适合制作承受力不太大的零件,如机床身、低压阀门座等;铸钢件强度较高,用于制作形状复杂的零件,如链轨板、高压阀门座等。
焊接件的组织性能介于锻件和铸件之间。
望采纳,谢谢。
㈦ 为什么综合力学性能要求较高的零件多用锻造方法而不用铸造方法制造
因为锻造件的力学性能好。经过锻造,抗拉强度、屈服强度都变高了。锻造你可以理解成专千锤百炼。属铁匠打铁就是锻造。千锤百炼才能更硬硬强。
铸造适合做结构复杂的件,但是他的力学性能没有锻造的好。
一个紧,一个不紧。
㈧ 锻造加工与其他加工方法相比,有哪些优势
通过锻造来能消除金属在冶炼过源程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。
利用金属的塑性对金属坯料施加外力,使其产生塑性变形、改变尺寸、形状及改善性能,用以制造机械零件、工件、工具或毛坯的成型加工方法就是锻造。
㈨ 锻造加工能改善坯料的力学性能吗
与铸件相比,金属经过锻造加工后能改善其组织结构和力学性能。铸造组织专经过锻造方法属热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
铸件的力学性能低于同材质的锻件力学性能。此外,锻造加工能保证金属纤维组织的连续性,使锻件的纤维组织与锻件外形保持一致,金属流线完整,可保证零件具有良好的力学性能与长的使用寿命采用精密模锻、冷挤压、温挤压等工艺生产的锻件,都是铸件所无法比拟的