挡油盘在机械手册哪里
❶ 机械设计基础课程设计挡油盘与挡油环有区别吗油润滑需要用挡油环吗
油润滑不需要挡油环的
❷ 急急急 需求机械设计 减速机课程设计
机械设计课程--带式运输机传动装置中的同轴式2级圆柱齿轮减速器
目 录
设计任务书……………………………………………………1
传动方案的拟定及说明………………………………………4
电动机的选择…………………………………………………4
计算传动装置的运动和动力参数……………………………5
传动件的设计计算……………………………………………5
轴的设计计算…………………………………………………8
滚动轴承的选择及计算………………………………………14
键联接的选择及校核计算……………………………………16
连轴器的选择…………………………………………………16
减速器附件的选择……………………………………………17
润滑与密封……………………………………………………18
设计小结………………………………………………………18
参考资料目录…………………………………………………18
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况: 载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N•m):850 鼓轮的直径D(mm):350
运输带速度V(m/s):0.7 带速允许偏差(%):5
使用年限(年):5 工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算; 2. 斜齿轮传动设计计算 3. 轴的设计 4. 滚动轴承的选择 5. 键和连轴器的选择与校核; 6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张 2. 齿轮、轴零件图各一张3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算 2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw Pw=3.4kW
2) 电动机的输出功率 Pd=Pw/η η= =0.904 Pd=3.76kW
3.电动机转速的选择 nd=(i1’•i2’…in’)nw 初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw nw=38.4 i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。 各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4 功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N•m) 39.8 39.4 191 925.2 888.4 传动比 1 1 5 5 1 效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即 dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8 N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa [σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 计算
(1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85
(2) 计算圆周速度 v= = =0.68m/s
(3) 计算齿宽b及模数mnt
b=φdd1t=1×67.85mm=67.85mm mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm b/h=67.85/7.63=8.89
(4) 计算纵向重合度εβ εβ= =0.318×1×tan14 =1.59
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故载荷系数
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得
d1= = mm=73.6mm
(7) 计算模数mn mn = mm=3.74
3.按齿根弯曲强度设计 由式(10—17 mn≥
1) 确定计算参数
(1) 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88
(3) 计算当量齿数
z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47
(4) 查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 计算[σF]
σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98
[σF1]=339.29Mpa [σF2]=266MPa
(7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468
大齿轮的数值大。
2) 设计计算 mn≥ =2.4 mn=2.5
4.几何尺寸计算
1) 计算中心距
z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm
2) 按圆整后的中心距修正螺旋角
β=arcos =13 55’50”
3) 计算大、小齿轮的分度圆直径
d1 =85.00mm d2 =425mm
4) 计算齿轮宽度
b=φdd1 b=85mm B1=90mm,B2=85mm
5) 结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。
轴的设计计算
拟定输入轴齿轮为右旋
II轴:
1.初步确定轴的最小直径 d≥ = =34.2mm
2.求作用在齿轮上的受力
Ft1= =899N Fr1=Ft =337N Fa1=Fttanβ=223N;
Ft2=4494N Fr2=1685N Fa2=1115N
3.轴的结构设计
1) 拟定轴上零件的装配方案
i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2) 根据轴向定位的要求确定轴的各段直径和长度
1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4. 求轴上的载荷
66 207.5 63.5 Fr1=1418.5N Fr2=603.5N
查得轴承30307的Y值为1.6 Fd1=443N Fd2=189N
因为两个齿轮旋向都是左旋。 故:Fa1=638N Fa2=189N
5.精确校核轴的疲劳强度
1) 判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面
2) 截面IV右侧的
截面上的转切应力为
由于轴选用40cr,调质处理,所以([2]P355表15-1)
a) 综合系数的计算
由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , ,
([2]P38附表3-2经直线插入)
轴的材料敏感系数为 , , ([2]P37附图3-1) 故有效应力集中系数为
查得尺寸系数为 ,扭转尺寸系数为 , ([2]P37附图3-2)([2]P39附图3-3)
轴采用磨削加工,表面质量系数为 , ([2]P40附图3-4)
轴表面未经强化处理,即 ,则综合系数值为
b) 碳钢系数的确定 碳钢的特性系数取为 ,
c) 安全系数的计算 轴的疲劳安全系数为
故轴的选用安全。
I轴:
1.作用在齿轮上的力
FH1=FH2=337/2=168.5 Fv1=Fv2=889/2=444.5
2.初步确定轴的最小直径 3.轴的结构设计
1) 确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。
h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。
i) 轴肩固定轴承,直径为42mm。
j) 该段轴要安装轴承,直径定为35mm。
2) 各段长度的确定
各段长度的确定从左到右分述如下:
a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b) 该段为轴环,宽度不小于7mm,定为11mm。
c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f) 该段由联轴器孔长决定为42mm
4.按弯扭合成应力校核轴的强度
W=62748N.mm T=39400N.mm
45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。
III轴
1.作用在齿轮上的力
FH1=FH2=4494/2=2247N Fv1=Fv2=1685/2=842.5N
2.初步确定轴的最小直径
3.轴的结构设计
1) 轴上零件的装配方案
2) 据轴向定位的要求确定轴的各段直径和长度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直径 60 70 75 87 79 70 长度 105 113.75 83 9 9.5 33.25
5.求轴上的载荷
Mm=316767N.mm T=925200N.mm
6. 弯扭校合
滚动轴承的选择及计算
I轴:
1.求两轴承受到的径向载荷
5、 轴承30206的校核
1) 径向力 2) 派生力 3) 轴向力 由于 ,所以轴向力为 ,4) 当量载荷
由于 , , 所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
II轴:
6、 轴承30307的校核
1) 径向力 2) 派生力 3) 轴向力 由于 , 所以轴向力为 ,
4) 当量载荷 由于 , ,所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
III轴:
7、 轴承32214的校核
1) 径向力 2) 派生力 3) 轴向力
由于 ,所以轴向力为 ,
4) 当量载荷 由于 , , 所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
键连接的选择及校核计算
代号 直径
(mm) 工作长度 (mm) 工作高度 (mm) 转矩(N•m) 极限应力(MPa)
高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0
12×8×80(单头) 40 68 4 39.8 7.32
中间轴 12×8×70(单头) 40 58 4 191 41.2
低速轴 20×12×80(单头) 75 60 6 925.2 68.5
18×11×110(单头) 60 107 5.5 925.2 52.4
由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。
连轴器的选择 由于弹性联轴器的诸多优点,所以考虑选用它
高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)
其主要参数如下:
材料HT200 公称转矩 轴孔直径 , 轴孔长 , 装配尺寸 半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)
其主要参数如下:
材料HT200 公称转矩 轴孔直径 轴孔长 ,装配尺寸 半联轴器厚
([1]P163表17-3)(GB4323-84
减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器 选用游标尺M16
起吊装置 采用箱盖吊耳、箱座吊耳 放油螺塞 选用外六角油塞及垫片M16×1.5
二、润滑与密封
一、齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。
密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。
轴承盖结构尺寸按用其定位的轴承的外径决定。
设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的设备。
❸ 有关大专 机械设计基础的试题及答案、、、
一 填空题(每小题2分,共20分)
1. 两构件通过.点或线接触组成的运动副称为高副。
2. 满足曲柄存在条件的铰链四杆机构,取与最短杆相邻的杆为机架时,为曲柄摇杆机构,取最短杆为机架时,为双曲柄机构。
3. 在凸轮机构中,常见的从动件运动规律为匀速运动时,将出现刚性冲击。
4. 直齿圆柱齿轮作接触强度计算时,取节线处的接触应力为计算依据,其载荷由一对对齿轮承担。
5. 为使两对直齿圆柱齿轮能正确啮合,它们的模数m 和压力角必须分别相等。
6. 两齿数不等的一对齿轮传动,其弯曲应力6.相等等;两轮硬度不等,其许用弯曲应力不相等等。
7. V带传动的主要失效形式是.打滑和疲劳断裂。
8. 在设计V带传动时,V带的型号是根据计算功率Pc 和小轮转速n1 选取的。
9. 链传动中的节距越大,链条中各零件尺寸越大,链传动的运动不均匀性增大。
10. 工作时只受弯矩不承受转矩的轴称为心轴。
二、选择题(每小题1分,共5分)二、选择题 C B D B D
1. 渐开线标准齿轮的根切现象发生在 。
A. 模数较大时 B. 模数较小时
C. 齿数较少时 D. 齿数较多时
2. 在下列四种型号的滚动轴承中, 必须成对使用。
A. 深沟球轴承 B. 圆锥滚子轴承
C. 推力球轴承 D. 圆柱滚子轴承
3. 在下列四种类型的联轴器中,能补偿两轴的相对位移以及可以缓和冲击、吸收振动的是 。
A. 凸缘联轴器 B. 齿式联轴器
C. 万向联轴器 D. 弹性套柱销联轴器
4. 在铰链四杆机构中,机构的传动角 和压力角 的关系是 。
A. B. C. D.
5. 对于普通螺栓联接,在拧紧螺母时,螺栓所受的载荷是 。
A. 拉力 B. 扭矩 C. 压力 D. 拉力和扭矩
三、判断题(正确的打“V”,错误的打“X”。每小题1分,共8分)三、判断提 X X V X X X X V
1. 在铰链四杆机构中,当最短杆与最长杆长度之和大于其余两杆长度之和时,为双曲柄机构。 ( )
2. 在凸轮机构中,基圆半径取得较大时,其压力角也较大。 (
3. 在平键联接中,平键的两侧面是工作面。 ( )
4. 斜齿圆柱齿轮的标准模数是大端模数。 ( )
5. 带传动在工作时产生弹性滑动是由于传动过载。 ( )
6. 转轴弯曲应力的应力循环特性为脉动循环变应力。 ( )
7. 向心推力轴承既能承受径向载荷,又能承受轴向载荷。 ( )
8. 圆盘摩擦离合器靠在主、从动摩擦盘的接触表面间产生的摩擦力矩来传递转矩。 (
四、问答题(每小题3分,共9分)
1. 试述齿廓啮合基本定律。
2. 试述螺纹联接防松的方法。
3. 试分析影响带传动承载能力的因素?四、问答题
1.所谓齿廓啮合基本定律是指:作平面啮合的一对齿廓,它们的瞬时接触点的公法线,必于两齿轮的连心线交于相应的节点C,该节点将齿轮的连心线所分的两个线段的与齿轮的角速成反比。
2.螺纹连接的防松方法按工作原理可分为摩擦防松、机械防松及破坏螺纹副防松。
摩擦防松有:弹簧垫圈、双螺母、椭圆口自锁螺母、横向切口螺母
机械防松有:开口销与槽形螺母、止动垫圈、圆螺母止动垫圈、串连钢丝
破坏螺纹副防松有:冲点法、端焊法、黏结法。
3.初拉力Fo? 包角a? 摩擦系数f? 带的单位长度质量q? 速度v
五、分析判断题(共12分)
1. 在铰链四杆机构中,已知 mm, mm, mm, mm,试判断该机构的类型,并给出判断依据。(本题6分)题五、1图
2. 如图所示展开式二级斜齿圆柱齿轮传动,Ⅰ轴为输入轴,已知小齿轮1的转向 和齿轮1、2的轮齿旋向如图所示。为使中间轴Ⅱ所受的轴向力可抵消一部分,试确定斜齿轮3的轮齿旋向,并在图中标出齿轮2、3所受的圆周力 、 和轴向力 、 的方向。(本题6分)题五、3图五、分析判断题
1.解:此四杆机构的四杆满足杆长和条件
Lab+Lad《 Lbc+Lcd
且由题已知机构以最短杆的邻边为机架,故此机构为曲柄摇杆机构
2.解:
1)3齿轮为右旋
2)受力方向如图
六、计算题(共36分)
1. 计算下列机构的自由度,并指出存在的复合铰链、虚约束或局部自由度(每小题3分,共6分)
题六、1图
2. 已知轮系如2图所示中, , , ? , , ,且顺时针转动。求杆系H的转数和回转方向。(本题10分)
3. 如图所示的压力容器,容器盖与缸体用6个普通螺栓联接,缸内压强 ,缸径 ,根据联接的紧密性要求,每个螺栓的残余预紧力F″=1.6F,F为单个螺栓的工作拉力。若选用螺栓材料的屈服极限 N/mm2,试按安全系数S=2时计算所需螺栓的小径 。(本题10分)题六、2图 题六、3图
4. 一对角接触球轴承反安装(宽边相对安装)。已知:径向力 , ,外部轴向力 ,方向如图所示,试求两轴承的轴向力 、 。(注:内部轴向力 )。(本题10分)
题六、4图六、计算题
1. a)解:F=3n-2PL-Ph
=3*5-2*7-0
=1
此题中存在复合铰链
备注:此题中5个构件组成复合铰链,共有4个低副
b)解:F=3n-2PL-Ph
=3*4-2*5-1
=1
此题中滚子为局部自由度
2.
解:由题意的得,5-3-6-4组成行星轮系
i54H=n5-nH/n4-nH =-Z3*Z4/Z5*Z6
因为1-2-5组成定轴轮系
i12=n1/n2=n1/n5=Z2/Z1
所以n5=450r/min
把n4=0及n5=450r/min代入上式
得到
nH=5.55r/min
这表明系杆H的旋转方向和齿轮1的一致
3.
解:
单个螺栓的Q=Q’+F=2.6F
Q*Z=S*P*A
2.6F*6=2*3.14*D2/4
得F=2264.4N
[σ]=300/2=150N/mm
所以d1由公式得,d1=15.81mm
取螺栓的直径为16mm
4.你换掉这道题目好了
七、结构题(本题10分)
下图为斜齿轮、轴、轴承组合结构图。齿轮用油润滑,轴承用脂润滑,编写序号列出图中的各设计错误,并指出设计错误的原因。(注:不必改正)
题七图第七题
1.无垫片,无法调整轴承的游系
2.轴肩过高,无法拆卸轴承
3.齿轮用油润滑,轴承用脂润滑,但无挡油盘
4.轴套长度应小于轮毂的长度
5.同一根轴上的两个键槽应布置在同一母线上。
6.套筒顶不住齿轮(过定位)
7.套筒应低于轴承外圈
8.轴承端盖与相应轴段处应有密封件,且与轴间不应接触,应有间隙。
9.连轴器无轴向固点,且与端盖间隙太小,易接触
10.键顶部与轮毂糟间应有间隙。
❹ 三相异步电动机产生机械噪声的原因
机械噪声产生的主要原因:
三相异步电机产生的机械噪音主要是轴承故障噪声。轴承在负荷力作用下各零件发生变形,而旋转和变形所引起受力或传动部件的摩擦与振动是其发出噪声的根源。 轴承径向或轴向游隙过小将增加滚动摩擦力,运动时会产生一种金属挤压力。若游隙过大,不但使轴承受力不均,而且使电机定转子间气隙发生变化,均使噪声增大,温升提高,振动加剧。轴承的游隙为8-15um,现场一般难以测量,靠手感来判断。
选用轴承应考虑到:(1)轴承与轴及端盖的配合导致的游隙缩小。(2)工作时内外圈的温差造成游隙变化。(3)轴和端盖因膨胀系数不同致使游隙改变。轴承额度寿命哟60000h,因使用维修不当,实际有效使用寿命仅为额定值的20-40%。
轴承和轴配合采用基孔制,且轴承的内径公差是负方向,所以配合较紧,若没有正确的工艺和适当的工具,极易在装配过程中损伤轴承和轴颈。拆卸轴承应使用专用拉具。
轴承轴承噪音判断:
1. 轴承内润滑脂过多,中低速运行会产生液击声响,高速时会出现不均匀的泡沫声;这是因润滑脂在滚珠搅动下,其分子内外摩擦加剧而稀释所造成。严重稀释的润滑脂渗漏到定子绕组上,妨碍其散热并影响其绝缘。通常润滑脂充填轴承空间2/3为宜.轴承缺油时会产生一种声音,高速则为“吱吱”声,并伴随有冒烟迹象。
2.润滑脂中杂物带入轴承内,可能产生断续而不规则的石子破碎声,这是因杂物在滚珠带动下其位置变化无常所致。据统计,轴承损坏原因中润滑脂污染占30%左右。
3.轴承内部产生周期性的“咔噔”声,用手转动感到某点很吃力,则应怀疑滚道上有点蚀或撕脱现象。轴承内发出断续的“哽哽”声,人工转动可有不固定死点,此情况说明滚珠破碎或滚珠架损坏。
4.轴与轴承松动不严重时会产生不连贯的金属摩擦声,严重时发生“啃轴”故障,旋转困难。轴承外圈在端盖孔中爬行时,会产生强烈且不均匀的低频噪声和振动(带有径向负荷后则可能消失)。
把医用听诊器的听头改为橡皮管便于和壳体接触来监测,可有效排除现场中其他声响干扰,同时也能准确判断噪声产生的具体部位,但要适当调节传声通道截面积(管径),否则噪声振耳难以忍受。
❺ 三相异步电动机产生机械噪声的原因是什么
三相异步电动机通电运行时发出的噪声是由两大类组成,其中一类是机械噪版声。
权机械噪声主要是由轴承运转和风扇通风产生的。
运行中,特别是断电空转时,可通过发出噪声的部位和类型初步确定产生较大噪声的部件和原因:
①空载损耗较大原因中的②~⑥基本适用本项,是造成轴承噪声大的主要原因。
②空载损耗较大原因中的⑦是造成通风噪声大的原因。
另外,轴流风扇的扇叶角度或尺寸不正确、风路(含外部和三相电动机内部)设计不合理或在风路中有障碍物等都会加大通风噪声(此时往往发出类似哨声的噪声)
将风罩进风孔用纸板等堵住,即切断进风,若噪声明显减小,则可确定是此原因。
③某些部件安装不到位或松动。
④定子、转子之间或某些有相对运动的部件(轴承密封环、挡油盘、甩水环等)因安装不到位或过松、过紧等原因造成相互摩擦。
⑤对使用变频器供电的变频电动机,同振动大的第⑤项。
❻ 机械设计课程设计的图书信息2
书 名: 机械设计课程设计
作者:王洪
出版社: 清华大学出版社
出版时间: 2009年05月
ISBN: 9787811236132
开本: 16开
定价: 26元 《机械设计课程设计》可作为高职高专院校机械类、近机类和非机类各专业机械设计课程设计的教材,也可供职工大学、函授大学、电视大学、业余大学等各类学校使用,并可供有关工程技术人员参考。
作者:编辑、剪辑:巩云鹏等
ISBN:10位[750242198X]13位[9787502421984]
出版社:冶金工业出版社
出版日期:1999年
定价:¥23.00元 第一部分机械设计课程设计指导书
1概述
1.1机械设计课程设计的目的
1.2机械设计课程设计的内容
1.3机械设计课程设计的步骤和进度
1.4机械设计课程设计的方法和要求
2传动装置的总体设计
2.1确定传动方案
2.2减速器类型简介
2.3选择电动机
2.4传动比分配
2.5传动装置的运动和动力参数计算
3传动零件的设计计算
3.1减速器以外的传动零件设计计算
3.2减速器内的传动零件设计计算
4减速器的构造
4.1齿轮、轴及轴承组合
4.2箱体
4.3减速器的附件
5减速器装配草图设计
5.1初绘减速器装配草图
5.2轴、轴承及键的强度校核计算
5.3完成减速器装配草图设计
5.4锥-圆柱齿轮减速器装配草图设计的特点与绘图步骤
5.5蜗杆减速器装配草图设计的特点与绘图步骤
6零件工作图设计
6.1零件工作图的设计要求
6.2轴零件工作图设计
6.3齿轮零件工作图设计
6.4箱体零件工作图设计
7装配工作图设计
7.1绘制装配工作图各视图
7.2标注尺寸
7.3零件序号、标题栏和明细表
7.4减速器的技术特性
7.5编写技术条件
7.6检查装配工作图
7.7减速器装配工作图的改错练习
8编写设计计算说明书
8.1设计计算说明书的内容与要求
8.2设计计算说明书的编写大纲
9课程设计的总结与答辩
第二部分计算机辅助机械设计
1概述
2计算机辅助机械设计中的设计资料处理
2.1数表程序化
2.2数表的插值计算
2.3数表解析化
2.4线图程序化
2.5数表与线图的文件化处理与数据库
3典型机械零件的计算机辅助设计
3.1V带传动的计算机辅助设计
3.2滚子链传动的计算机辅助设计
3.3渐开线齿轮传动的计算机辅助设计
3.4普通蜗杆传动的计算机辅助设计
3.5轴的计算机辅助设计
3.6滚动轴承计算机辅助设计
第三部分电子图板绘图
1概述
2电子图板CAXA绘图基础
2.1电子图板的用户界面和菜单系统
2.2常用键的功能
2.3约定
2.4电子图板绘图过程中的有关问题
3电子图板绘图示例
3.1轴的零件工作图
3.2齿轮的零件工作图
3.3减速器装配工作图
第四部分设计资料
1机械制图
1.1一般规定
图纸幅面及图框格式(摘自GB/T146891993)
比例(摘自GB/T14690-1993)
剖面符号(摘自GB4457.5-1984)
装配图或零件图标题栏格式(摘自GB10609.1-1989)
明细表格式(摘自GB10609.1-1989)
图线的名称、型式、宽度及应用(摘自GB/T17450-1998)
1.2常用零件的规定画法
螺纹及螺纹紧固件的画法(摘自GB4459.1-1995)
螺纹的标注(摘自GB4459.11995)
齿轮、齿条、蜗杆、蜗轮及链轮的画法(摘自GB4459.2—1984)
齿轮、蜗轮、蜗杆啮合画法(摘自GB4459.2—1984)
花键的画法及其尺寸注法(摘自GB4459.3—1984)
1.3机构运动简图符号
机构运动简图符号(摘自GB44601984)
2常用资料与一般标准、规范
2.1常用资料
国内部分标准代号
国外部分标准代号
黑色金属各种硬度值对照表(摘自GB1172—1974)
常用材料弹性模量及泊松比
常用材料的密度
材料的滑动摩擦系数
摩擦副的摩擦系数
滚动摩擦力臂(大约值)
机械传动效率概略值和传动比范围
2.2一般标准
标准尺寸(直径、长度、高度等)(摘自GB2822-1981)
中心孔(摘自GB145-1985)
配合表面处的圆角半径和倒角尺寸(摘自GB6403.4-1986)
圆形零件自由表面过渡圆角半径
滚花(摘自GB6403.3-1986)
齿轮滚刀外径尺寸(摘自GB6083-1985)
砂轮越程槽(摘自GB6403.5-1986)
刨切越程槽
最小壁厚
外壁、内壁与筋的厚度
铸造内圆角
铸造外圆角(摘自JB/ZQ4256-1986)
铸造斜度
铸造过渡斜度
3机械设计中常用材料
3.1黑色金属
碳素结构钢(摘自GB700-1988)
优质碳素结构钢(摘自GB6991988)
合金结构钢(摘自GB3077-1988)
一般工程用铸钢及铸铁(摘自GB11352-1989、GB9439-1988、GB1348-1988)
3.2有色金属
加工青铜(摘自GB5233-1985)
铸造铜合金(摘自GB1176-1987)
3.3非金属材料
常用工程塑料
工业用硫化橡胶板(摘自GB5574-1994)
工业用毛毡(摘自FJ314-1981)
软钢纸板(摘自QB365-1981)
4螺纹及螺纹联接
4.1螺纹
普通螺纹基本尺寸(摘自GB196-1981、GB197-1981)
内、外螺纹选用公差带(摘自GB197-1981)
螺纹旋合长度(摘自GB197-1981)
4.2螺纹零件的结构要素
普通螺纹收尾、肩距、退刀槽、倒角(摘自GB3-1979)
粗牙螺栓、螺钉的拧人深度和螺纹孔尺寸
紧固件通孔及沉孔尺寸(摘自GB152.2~152.4-1988、GB5277-1985)
4.3螺栓
六角头螺栓-A级和B级(摘自GB5782-1986)、细牙-A级和B级(摘自GB5785-1986)
六角头螺栓-全螺纹-A级和B级(摘自GB5783-1986)
六角头铰制孔用螺栓-A级和B级(摘自GB27-1988)
4.4螺钉
内六角圆柱头螺钉(摘自GB70-1985)
吊环螺钉(摘自GB825-1988)
启箱螺钉(摘自GB85-1988)
十字槽沉头螺钉(摘自GB819-1985)、十字槽盘头螺钉(摘自GB818-1985)
开槽锥端紧定螺钉(摘自GB71-1985)、开槽平端紧定螺钉(摘自GB73-1985)
开槽长圆柱端紧定螺钉(摘自GB75-1985)
4.5螺母
I型六角螺母-A和B级(摘自GB6170-1986)、I型六角螺母-细牙-A和B级
(摘自GB6171-1986)
圆螺母(摘自GB812-1988)
4.6垫圈
标准型弹簧垫圈(摘自GB93-1987)
圆螺母用止动垫圈(摘自GB858-1988)
4.7挡圈
螺钉紧固轴端挡圈(摘自GB891-1986)、螺栓紧固轴端挡圈(摘自GB892-1986)
孔用弹性挡圈-A型(摘自GB893.1-1986)
轴用弹性挡圈-A型(摘自GB894.1-1986)
5键、花键和销联接
普通平键(摘自GB1095-1979、GB1096-1979;1990年确认有效)
矩形花键基本尺寸系列及位置度、对称度公差(摘自GB1144-1987)
矩形内、外花键的尺寸公差带(摘自GB1144-1987)
圆柱销(摘自GB119-1986)、圆锥销(摘自GB117-1986)
内螺纹圆柱销(摘自GB120-1986)、内螺纹圆锥销(摘自GB118-1986)
6滚动轴承
深沟球轴承(GB/T276-1994)
角接触球轴承(摘自GB/T292-1994)
圆锥滚子轴承(摘自GB/T297-1994)
圆柱滚子轴承(摘自GB/T283-1994)
角接触球轴承及圆锥滚子轴承的轴向游隙
滚动轴承与轴和座孔的配合(摘自GB/T275-1993)
7联轴器
HL型弹性柱销联轴器(摘自GB5014-1985)
TL型弹性套柱销联轴器(摘自GB4323-1985)
ML型梅花形弹性联轴器(摘自GB5272-1985)
滑块联轴器(摘自JB/ZQ4384-1986)
8润滑与密封
8.1润滑剂
常用润滑油的性质和用途
常用润滑脂的性质和用途
8.2油杯
直通式压注油杯(摘自JB/T7940.1-1995)
接头式压注油杯(摘自JB/T7940.2-1995)
旋盖式油杯(摘自JB/T7940.3-1995)
压配式压注油杯(摘自JB/T7940.4-1995)
8.3油标和油标尺
压配式圆形油标(摘自JB/T7941.1-1995)
长形油标(摘自JB/T7941.3-1995)
油标尺
8.4密封装置
毡圈油封形式和尺寸(摘自JB/ZQ4606-1986)
旋转轴唇形密封圈(摘自GB13871-1992)
油沟式密封槽(摘自JB/ZQ4245-1986)
迷宫密封
O形密封圈轴向沟槽尺寸(摘自GB/T3452.3-1988)
通用O形橡胶密封圈(代号G)的型式、尺寸及公差(摘自GB3452.1-1992)
9减速器附件
9.1检查孔与检查孔盖
9.2通气器
通气塞
通气器
9.3轴承盖
螺钉联接式轴承盖
嵌入式轴承盖
9.4螺塞及封油垫
9.5挡油盘
9.6起吊装置
吊耳和吊钩
10常用传动零件的结构
10.1圆柱齿轮的结构
10.2圆锥齿轮的结构
10.3蜗轮蜗杆的结构
10.4V带轮的结构
10.5链轮的结构
11极限与配合、形状位置公差和表面粗糙度
11.1公差与配合名词与代号说明
标准公差和基本偏差代号
配合种类及代号
11.2标准公差值和孔及轴的极限偏差值
基本尺寸至500mm标准公差值
基本尺寸由大于10mm至315mm孔的极限偏差值
基本尺寸由大于10mm至315mm轴的极限偏差值
减速器主要零件的荐用配合
11.3形状公差及位置公差(摘自GB/T1184-1996)
直线度、平面度公差
圆度、圆柱度公差
同轴度、对称度、圆跳动和全跳动公差
平行度、垂直度、倾斜度公差
轴的形位公差推荐标注项目
箱体形位公差推荐标注项目
11.4表面粗糙度
表面粗糙度与对应的加工方法
典型零件表面粗糙度选择
11.5渐开线圆柱齿轮精度(摘自GB10095-1988)
11.6锥齿轮精度(摘自GB113651989)
11.7圆柱蜗杆、蜗轮精度(摘自GB100891988)
12电动机
Y系列(IP44)三相异步电动机技术数据(摘自ZB/TK22007-1988)
Y系列(IP44)三相异步电动机的外形及安装尺寸
第五部分参考图例
1减速器装配工作图
单级圆柱齿轮减速器
双级圆柱齿轮减速器(软齿面齿轮,铸造箱体)
双级圆柱齿轮减速器(硬齿面齿轮,铸造箱体)
双级圆柱齿轮减速器(软齿面齿轮,焊接结构箱体)
锥圆柱齿轮减速器
蜗杆减速器(蜗杆下置)
蜗杆减速器(整体式结构箱体)
蜗杆减速器(蜗杆上置,带风扇)
行星齿轮减速器(2KH型)
2箱体零件工作图
双级圆柱齿轮减速器箱盖
双级圆柱齿轮减速器箱座
锥-圆柱齿轮减速器箱盖
锥-圆柱齿轮减速器箱座
蜗杆减速器箱盖
蜗杆减速器箱座
3轴和轮类零件工作图
轴
圆柱齿轮轴
圆柱齿轮
锥齿轮轴
锥齿轮
蜗杆
蜗轮
轮芯
轮缘
第六部分机械设计课程设计题目
ZDL型题目
ZDD型题目
ZL型题目
ZZ型题目
WD型题目
NGW型题目
参考文献

