当前位置:首页 » 机械制造 » 你是什么之间相互的机械运动

你是什么之间相互的机械运动

发布时间: 2021-02-06 11:23:59

⑴ 物理学中还未解决的悖论有哪些

薛定谔猫是薛定谔在年提出的关于量子力学解释的一个佯谬(也译为悖论).猫被封在一个密室里,密室里有食物有毒药.毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制.如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑.这个装置由薛定谔所设计,所以猫便叫做薛定谔猫.原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间.如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半.但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午.当然,物理学家知道它在上午或下午衰变的几率——也就是猫在上午或者下午死亡的几率.如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,猫或者死,或者活,这是它的两种本征态.但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与死的叠加态.我们只有在揭开盖子的一瞬间,才能确切地知道此猫是死是活.但是,也就是在揭开盖子的一瞬间,描述猫的状态的波函数由叠加态立即坍塌到某一个本征态,即死态或者活态.量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道此猫是死是活,她将永远到处于死与活的叠加态,即通常所说的半死不活.这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活?
测不准原理:
测不准原理也叫不确定原理,是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理.

海森伯在创立矩阵力学时,对形象化的图象采取否定态度.但他在表述中仍然需要“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇.可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考.他试图用矩阵力学为电子径迹作出数学表述,可是没有成功.这使海森伯陷入困境.他反复考虑,意识到关键在于电子轨道的提法本身有问题.人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道.因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度.可以把这些不确定性限制在最小的范围内,但不能等于零.这就是海森伯对不确定性最初的思考.据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他.爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的.”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的.实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象.”

海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义.”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因.”

海森伯测不准原理是通过一些实验来论证的.设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ.但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ.经过一番推理计算,海森伯得出:△q△p=h/4π.海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度.于是,位置测定得越准确,动量的测定就越不准确,反之亦然.”

海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小.再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到.”

海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题.双方发生过激烈的争论.玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心.”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们.在自然界中没有什么东西是这个数学推理方式不能描述的.”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系.”

玻尔更着重于从哲学上考虑问题.1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理.他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在.对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面.波粒二象性正是互补性的一个重要表现.测不准原理和其它量子力学结论也可从这里得到解释.

双生子悖论:
爱因斯坦提出著名的相对论即时间可以改变的理论不久以后,就有天才用双生子悖论进行责难.虽然这个悖论早已被证伪,但我们却可以一窥天才有悖于常理的思路.:说假设地球上出生了一对双胞胎,一个孩子留在地球上,同时另一个孩子乘坐飞船以接近光速离开地球,当地球上的孩子长大到二十岁后飞船以相同的速度返航,当地球上的孩子四十岁的时候飞船安全的抵达到了地球.现在请问:他们双生子中谁更加年轻?假如认为接近光速运动时时间会变得更慢,那么大部分人一定会认为乘坐光速离开地球的孩子更加年轻,但是,当飞船以接近光速离开地球的时候,同时我们也可以认为飞船是静止不动的而地球以接近光速离开飞船.那么现在大部分人一定认为是地球上的孩子更加年轻!到底谁更加年轻,当然答案很容易只要把两个孩子放在一起比较一把就可以了,千万不要告诉大家这两个孩子一样年轻!那样爱因斯坦的灵魂会不安的...
麦克斯韦妖:
麦克斯韦妖是在物理学中,假象的能探测并控制单个分子运动的“类人妖”或功能相同的机制,是1871年由19世纪英国物理学家麦克斯韦为了说明违反热力学第二定律的可能性而设想的.

当时麦克斯韦意识到自然界存在着与熵增加相拮抗的能量控制机制.但他无法清晰地说明这种机制.他只能诙谐的假定一种“妖”,能够按照某种秩序和规则把作随机热运动的微粒分配到一定的相格里.麦克斯韦妖是耗散结构的一个雏形

在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功.在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论.

直至热力学第一定律发现后,第一类永动机的神话才不攻自破.

热力学第一定律是能量守恒和转化定律在热力学上的具体表现,它指明:热是物质运动的一种形式.这说明外界传给物质系统的能量(热量),等于系统内能的增加和系统对外所作功的总和.它否认了能量的无中生有,所以不需要动力和燃料就能做功的第一类永动机就成了天方夜谭式的设想.

热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题.于是,热力学应运而生.1798年,汤普生通过实验否定了热质的存在.德国医生、物理学家迈尔在1841?843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出.焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证.

在热力学第一定律之后,人们开始考虑热能转化为功的效率问题.这时,又有人设计这样一种机械——它可以从一个热源无限地取热从而做功.这被称为第二类永动机.

1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机.通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%.即热量不能完全转化为功.

1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律.不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功.这就是热力学第二定律的“开尔文表述”.奥斯特瓦尔德则表述为:第二类永动机不可能制造成功.

在提出第二定律的同时,克劳修斯还提出了熵的概念S=Q/T,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加.但在这之后,克劳修斯错误地把孤立体系中的熵增定律扩展到了整个宇宙中,认为在整个宇宙中热量不断地从高温转向低温,直至一个时刻不再有温差,宇宙总熵值达到极大.这时将不再会有任何力量能够使热量发生转移,此即“热寂论”.

为了批驳“热寂论”,麦克斯韦设想了一个无影无形的精灵(麦克斯韦妖),它处在一个盒子中的一道闸门边,它允许速度快的微粒通过闸门到达盒子的一边,而允许速度慢的微粒通过闸门到达盒子的另一边.这样,一段时间后,盒子两边产生温差.麦克斯韦妖其实就是耗散结构的一个雏形.

1877年,玻尔兹曼发现了宏观的熵与体系的热力学几率的关系S=KlnQ,其中 K为玻尔兹曼常数.1906年,能斯特提出当温度趋近于绝对零度 T→0 时,△S / O = 0 ,即“能斯特热原理”.普朗克在能斯特研究的基础上,利用统计理论指出,各种物质的完美晶体,在绝对零度时,熵为零(S 0 = 0 ),这就是热力学第三定律.

热力学三定律统称为热力学基本定律,从此,热力学的基础基本得以完备

⑵ 机械运动

1,机械运动是事物之间空间位置的相对变化,比如以公路边的一棵树为参照物(就是认为它不动)那路上的行人、车辆相对它的运动就都是机械运动。所以你提到的太阳东升西落、同步卫星相对于地球的运动都是机械运动。
2,禾苗的生长不是机械运动,它是生物运动,或者叫生命运动。
3,热运动是一个系统内部的组成粒子的机械运动,它的特点是杂乱无章,永不停息。比如,一杯空气里的各种分子都在不停地到处乱撞,永不停息;金属里的电子会到处乱跑等。
4,思维运动是特指人类的思考过程,是在人的大脑里进行的一系列活动,它可以包括概念,判断,推理方式等。
5,核电运动这个名词,不好意思,我还没听说过。要是你指原子核内部的运动的话,那它应该是组成原子核的质子,中子等的相互作用。要是指电磁现象的话,就是各种带电的粒子和物体间因为带有电荷而产生的相互作用。
6,所有这些运动被分成不同和等级,从低到高是:机械运动、物理运动、化学运动、生物运动、思维运动、社会运动。但它们之间不是无关的,一般高级的运动里包含低级运动的成分,但又有自己不同于低级运动的规律。比如,禾苗的生长,是一种生物运动,但它的生长过程有水分和营养的进出,这是这些物质相对地面的机械运动,而它们进出的机理则有物理的,化学的和生物的原因,就不能仅用机械运动的原理去解释。
这么多,说得有点像政治书了,但还是不完全,可能也不是我这种水平的人几句话能说清楚的,请你多参考一些其的资料。

⑶ 什么是机械运动

物理学里把物体位置的变化叫机械运动。
如我们所知,力的作用效果有:
改变回物体的运动状态
改变物体的形状答
改变物的运动状态大多会引起物体的位置变化,引起机械运动。
改变物体的形状而不改变它的运动状态就叫是非机械运动中的一种。
据个很简单的例子,握紧拳头去锤橡皮泥,橡皮泥有形变,但没有得到速度,这就叫做非机械运动。
要是在转化为另一种运动形态以后,该过程的机械运动消失不见了。剩下的就是非机械运动。这种不能归结为物体位移的特性,将表现为不可逆性。力还可以是在实际的连续介质中的波动过程的结果。在被连续化的或是连续的介质中,过程的非力学的特征必须运用在原则上不同于质点的位移和位移对时间导数的概念。在恩格斯的著作中,能量的概念及其与动量概念的区别,是同非机械运动的概念联系在一起的。这种非机械的运动乃是机械运动的原因,并与其互相转换联系在一起。在相互转换中作为运动的量度的功是守恒的。

⑷ 牛顿的机械运动的三个基本定律具体是什么

牛顿三大定律
牛顿三大定律是力学中重要的定律,它是研究经典力学的基础。
1.牛顿第一定律
内容:任何物体都保持静止或匀速直线运动的状态,直到受到其它物体的作用力迫使它改变这种状态为止。
说明:物体都有维持静止和作匀速直线运动的趋势,因此物体的运动状态是由它的运动速度决定的,没有外力,它的运动状态是不会改变的。物体的这种性质称为惯性。所以牛顿第一定律也称为惯性定律。第一定律也阐明了力的概念。明确了力是物体间的相互作用,指出了是力改变了物体的运动状态。因为加速度是描写物体运动状态的变化,所以力是和加速度相联系的,而不是和速度相联系的。在日常生活中不注意这点,往往容易产生错觉。
注意:牛顿第一定律并不是在所有的参照系里都成立,实际上它只在惯性参照系里才成立。因此常常把牛顿第一定律是否成立,作为一个参照系是否惯性参照系的判据。
2.牛顿第二定律
内容:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。
第二定律定量描述了力作用的效果,定量地量度了物体的惯性大小。它是矢量式,并且是瞬时关系。
要强调的是:物体受到的合外力,会产生加速度,可能使物体的运动状态或速度发生改变,但是这种改变是和物体本身的运动状态有关的。
真空中,由于没有空气阻力,各种物体因为只受到重力,则无论它们的质量如何,都具有的相同的加速度。因此在作自由落体时,在相同的时间间隔中,它们的速度改变是相同的。
3.牛顿第三定律
内容:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。
说明:要改变一个物体的运动状态,必须有其它物体和它相互作用。物体之间的相互作用是通过力体现的。并且指出力的作用是相互的,有作用必有反作用力。它们是作用在同一条直线上,大小相等,方向相反。
另需要注意:
(1)作用力和反作用力是没有主次、先后之分。同时产生、同时消失。
(2)这一对力是作用在不同物体上,不可能抵消。
(3)作用力和反作用力必须是同一性质的力。
(4)与参照系无关。

⑸ 什么是机械运动(物理题)

物理学里把物体位置的变化叫机械运动。
如我们所知,力的作用效果有:
改变物体的运动状态专
改变物体的形状属
改变物的运动状态大多会引起物体的位置变化,引起机械运动。
改变物体的形状而不改变它的运动状态就叫是非机械运动中的一种。
据个很简单的例子,握紧拳头去锤橡皮泥,橡皮泥有形变,但没有得到速度,这就叫做非机械运动。
要是在转化为另一种运动形态以后,该过程的机械运动消失不见了。剩下的就是非机械运动。这种不能归结为物体位移的特性,将表现为不可逆性。力还可以是在实际的连续介质中的波动过程的结果。在被连续化的或是连续的介质中,过程的非力学的特征必须运用在原则上不同于质点的位移和位移对时间导数的概念。在恩格斯的著作中,能量的概念及其与动量概念的区别,是同非机械运动的概念联系在一起的。这种非机械的运动乃是机械运动的原因,并与其互相转换联系在一起。在相互转换中作为运动的量度的功是守恒的。

⑹ 物理学专家在线问答

物理学是一种自然科学,注重于研究物质、能量、空间、时间,尤其是它们各自的性质回与彼此答之间的相互关系。
物理学分类:
牛顿力学与理论力学(Rational mechanics)研究物体机械运动的基本规律及关于时空相对性的规律。
电磁学与电动力学研究电磁现象,物质的电磁运动规律及电磁辐射等规律。
热力学与统计力学研究物质热运动的统计规律及其宏观表现。
相对论研究物体的高速运动效应以及相关的动力学规律。
量子力学研究微观物质运动现象以及基本运动规律。
粒子物理学、原子核物理学、原子与分子物理学、固体物理学、凝聚态物理学、激光物理学、等离子体物理学、地球物理学、生物物理学、天体物理学。

⑺ 力的概念是什么

力是看不来见摸不着的自,它是人们在长期生产实践中,观察物体之间相互作用的表面现象而抽象出来的概念。这里所说的相互作用,仅指物体间的机械作用,这种机械作用的结果,总伴随着物体机械运动状态发生变化(包括变形)的表面现象。
由此力的定义为:力是物体间的机械作用,这种作用使物体的机械运动状态发生变化或使物体的形状发生变化。
物体间相互作用的方式,有的是直接接触,例如:机车对车厢的牵引力、物体表面之间的摩擦力等;也有的不是直接接触,例如:地球对物体的吸引力、磁性物体间的引力和斥力等。
实践表明,力对物体的作用效果决定于三个要素:力的大小、力的方向、力的作用点。改变任何要素都会改变力对物体的作用效果。

⑻ 什么是力学

“力学是研究物质机械运动规律的科学。自然界物质有许多层次,从宇宙体系,宏观的天体和物体,细观的颗粒、纤维

⑼ 物理历史上著名的悖论

薛定谔猫是薛定谔在1935年提出的关于量子力学解释的一个佯谬(也译为悖论)。猫被封在一个密室里,密室里有食物有毒药。毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。如果原子核衰变,则放出阿尔法粒子,触动电子开关,锤子落下,砸碎毒药瓶,释放出里面的氰化物气体,猫必死无疑。这个装置由薛定谔所设计,所以猫便叫做薛定谔猫。原子核的衰变是随机事件,物理学家所能精确知道的只是半衰期——衰变一半所需要的时间。如果一种放射性元素的半衰期是一天,则过一天,该元素就少了一半,再过一天,就少了剩下的一半。但是,物理学家却无法知道,它在什么时候衰变,上午,还是下午。当然,物理学家知道它在上午或下午衰变的几率——也就是猫在上午或者下午死亡的几率。如果我们不揭开密室的盖子,根据我们在日常生活中的经验,可以认定,猫或者死,或者活,这是它的两种本征态。但是,如果我们用薛定谔方程来描述薛定谔猫,则只能说,她处于一种活与死的叠加态。我们只有在揭开盖子的一瞬间,才能确切地知道此猫是死是活。但是,也就是在揭开盖子的一瞬间,描述猫的状态的波函数由叠加态立即坍塌到某一个本征态,即死态或者活态。量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道此猫是死是活,她将永远到处于死与活的叠加态,即通常所说的半死不活。这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活?
测不准原理:
测不准原理也叫不确定原理,是海森伯在1927年首先提出的,它反映了微观粒子运动的基本规律,是物理学中又一条重要原理。

海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要“坐标”、“速度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。因此,在量子力学中,一个电子只能以一定的不确定性处于某一位置,同时也只能以一定的不确定性具有某一速度。可以把这些不确定性限制在最小的范围内,但不能等于零。这就是海森伯对不确定性最初的思考。据海森伯晚年回忆,爱因斯坦1926年的一次谈话启发了他。爱因斯坦和海森伯讨论可不可以考虑电子轨道时,曾质问过海森伯:“难道说你是认真相信只有可观察量才应当进入物理理论吗?”对此海森伯答复说:“你处理相对论不正是这样的吗?你曾强调过绝对时间是不许可的,仅仅是因为绝对时间是不能被观察的。”爱因斯坦承认这一点,但是又说:“一个人把实际观察到的东西记在心里,会有启发性帮助的……在原则上试图单靠可观察量来建立理论,那是完全错误的。实际上恰恰相反,是理论决定我们能够观察到的东西……只有理论,即只有关于自然规律的知识,才能使我们从感觉印象推论出基本现象。”

海森伯在1927年的论文一开头就说:“如果谁想要阐明‘一个物体的位置’(例如一个电子的位置)这个短语的意义,那么他就要描述一个能够测量‘电子位置’的实验,否则这个短语就根本没有意义。”海森伯在谈到诸如位置与动量,或能量与时间这样一些正则共轭量的不确定关系时,说:“这种不确定性正是量子力学中出现统计关系的根本原因。”

海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△p∝1/λ。经过一番推理计算,海森伯得出:△q△p=h/4π。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

海森伯还通过对确定原子磁矩的斯特恩-盖拉赫实验的分析证明,原子穿过偏转所费的时间△T越长,能量测量中的不确定性△E就越小。再加上德布罗意关系λ=h/p,海森伯得到△E△T<h,并且作出结论:“能量的准确测定如何,只有靠相应的对时间的测不准量才能得到。”

海森伯的测不准原理得到了玻尔的支持,但玻尔不同意他的推理方式,认为他建立测不准关系所用的基本概念有问题。双方发生过激烈的争论。玻尔的观点是测不准关系的基础在于波粒二象性,他说:“这才是问题的核心。”而海森伯说:“我们已经有了一个贯彻一致的数学推理方式,它把观察到的一切告诉了人们。在自然界中没有什么东西是这个数学推理方式不能描述的。”玻尔则说:“完备的物理解释应当绝对地高于数学形式体系。”

玻尔更着重于从哲学上考虑问题。1927年玻尔作了《量子公设和原子理论的新进展》的演讲,提出著名的互补原理。他指出,在物理理论中,平常大家总是认为可以不必干涉所研究的对象,就可以观测该对象,但从量子理论看来却不可能,因为对原子体系的任何观测,都将涉及所观测的对象在观测过程中已经有所改变,因此不可能有单一的定义,平常所谓的因果性不复存在。对经典理论来说是互相排斥的不同性质,在量子理论中却成了互相补充的一些侧面。波粒二象性正是互补性的一个重要表现。测不准原理和其它量子力学结论也可从这里得到解释。

双生子悖论:
爱因斯坦提出著名的相对论即时间可以改变的理论不久以后,就有天才用双生子悖论进行责难.虽然这个悖论早已被证伪,但我们却可以一窥天才有悖于常理的思路.:说假设地球上出生了一对双胞胎,一个孩子留在地球上,同时另一个孩子乘坐飞船以接近光速离开地球,当地球上的孩子长大到二十岁后飞船以相同的速度返航,当地球上的孩子四十岁的时候飞船安全的抵达到了地球.现在请问:他们双生子中谁更加年轻?假如认为接近光速运动时时间会变得更慢,那么大部分人一定会认为乘坐光速离开地球的孩子更加年轻,但是,当飞船以接近光速离开地球的时候,同时我们也可以认为飞船是静止不动的而地球以接近光速离开飞船.那么现在大部分人一定认为是地球上的孩子更加年轻!到底谁更加年轻,当然答案很容易只要把两个孩子放在一起比较一把就可以了,千万不要告诉大家这两个孩子一样年轻!那样爱因斯坦的灵魂会不安的...
麦克斯韦妖:
麦克斯韦妖是在物理学中,假象的能探测并控制单个分子运动的“类人妖”或功能相同的机制,是1871年由19世纪英国物理学家麦克斯韦为了说明违反热力学第二定律的可能性而设想的。

当时麦克斯韦意识到自然界存在着与熵增加相拮抗的能量控制机制。但他无法清晰地说明这种机制。他只能诙谐的假定一种“妖”,能够按照某种秩序和规则把作随机热运动的微粒分配到一定的相格里。麦克斯韦妖是耗散结构的一个雏形

在19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论。

直至热力学第一定律发现后,第一类永动机的神话才不攻自破。

热力学第一定律是能量守恒和转化定律在热力学上的具体表现,它指明:热是物质运动的一种形式。这说明外界传给物质系统的能量(热量),等于系统内能的增加和系统对外所作功的总和。它否认了能量的无中生有,所以不需要动力和燃料就能做功的第一类永动机就成了天方夜谭式的设想。

热力学第一定律的产生是这样的:在18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841?843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。焦耳设计了实验测定了电热当量和热功当量,用实验确定了热力学第一定律,补充了迈尔的论证。

在热力学第一定律之后,人们开始考虑热能转化为功的效率问题。这时,又有人设计这样一种机械——它可以从一个热源无限地取热从而做功。这被称为第二类永动机。

1824年,法国陆军工程师卡诺设想了一个既不向外做工又没有摩擦的理想热机。通过对热和功在这个热机内两个温度不同的热源之间的简单循环(即卡诺循环)的研究,得出结论:热机必须在两个热源之间工作,热机的效率只取决与热源的温差,热机效率即使在理想状态下也不可能的达到100%。即热量不能完全转化为功。

1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。这就是热力学第二定律的“开尔文表述”。奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。

在提出第二定律的同时,克劳修斯还提出了熵的概念S=Q/T,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。但在这之后,克劳修斯错误地把孤立体系中的熵增定律扩展到了整个宇宙中,认为在整个宇宙中热量不断地从高温转向低温,直至一个时刻不再有温差,宇宙总熵值达到极大。这时将不再会有任何力量能够使热量发生转移,此即“热寂论”。

为了批驳“热寂论”,麦克斯韦设想了一个无影无形的精灵(麦克斯韦妖),它处在一个盒子中的一道闸门边,它允许速度快的微粒通过闸门到达盒子的一边,而允许速度慢的微粒通过闸门到达盒子的另一边。这样,一段时间后,盒子两边产生温差。麦克斯韦妖其实就是耗散结构的一个雏形。

1877年,玻尔兹曼发现了宏观的熵与体系的热力学几率的关系S=KlnQ,其中 K为玻尔兹曼常数。1906年,能斯特提出当温度趋近于绝对零度 T→0 时,△S / O = 0 ,即“能斯特热原理”。普朗克在能斯特研究的基础上,利用统计理论指出,各种物质的完美晶体,在绝对零度时,熵为零(S 0 = 0 ),这就是热力学第三定律。

热力学三定律统称为热力学基本定律,从此,热力学的基础基本得以完备

⑽ 下列现象中,属于机械运动的是

我想你应该是一位初中生吧。从初中所学物理知识的角度来说,机械能与整个物体的版机械运动情况有关权,也就是与物体间的相互作用力、相对位置的变化有关;而内能与物体内部分子的热运动和分子间的相互作用情况有关,即与物体温度的变化、物态变化的情况有关,因此内能和机械能是完全不同的两种形式能的表现。冰块熔化时,是由于冰块吸热使物质内部的分子结构发生变化,而在宏观上它的机械运动情况并没有发生变化,因此,冰块熔化不时机械运动,而是物质内部分子的热运动。
望采纳,谢谢。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506