爬虫时候需要使用多少台机器
Ⅰ 用python写一个爬虫有多难
爬虫是互联网上最常见的一种东西了吧。
爬虫这东西每天都在网上爬大量的信息,各大搜索引擎厂商每天都有上百万的爬虫在网络上活动,这些爬虫的作用就是给搜索引擎采集互联网上最新的内容,采集来的内容经过分类、加工之后,进入搜索引擎的索引。这是爬虫最常见的应用。
关于搜索引擎的理论非常多,应该已经形成系统的理论和方法了。这里不再多追求搜索引擎的细节,只来看看爬虫如何爬有效的信息。
ps. 这个博客已经很久没有更新了。现在时间越来越少,平时鲜有时间来更新博客了。
最近某人发现,python其实是一种很适合写爬虫的语言,而且python越用越顺手。现在若是有人问我“c++和c#学哪一个?“之类的问题的时候,我一定会说,学python吧,因为生命短暂,你应该学习python。
所谓爬虫,就是把网页的html下载下来,然后从里面提取出来有用的信息,这些有用的信息一般就是正文,图片,链接一类的信息。
针对特定网站的爬虫就更好写了,用正则表达式,把网页里的链接信息找到,然后找到需要的信息,保存在本地,然后进入下一个链接重复上一次的过程。
下面的脚本演示如何从加菲猫的官网上把从1978年至今的所有漫画全部下载下来
import os,urllib,urllib2,re
hosts = "http://**********"
#initpos = "/mobile/garfield/1978/06/19"
initpos ="/mobile/garfield/1979/08/08"
pname = re.compile('''<span class="authorText">.+?<em>(.*?)</em></span>''')
pcomic = re.compile('''<div id="comic".+?src="(.*?)".+?</div>''')
pnext = re.compile('''<a href="(.*?)" class="next">''')
def getpage(url):
print url
req = urllib2.Request(url)
req.add_header("User-Agent","Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:21.0) Gecko/20100101 Firefox/21.0")
req.add_header("If-None-Match","")
u = urllib2.urlopen(req).read()
return u
def getnextpos(content,patten):
r = patten.findall(content)
for x in r:
print 'find next: ',x
return x
def savecomic(content,patten):
r = patten.findall(content)
print 'find commic:',r
r2 = pname.findall(content)
print 'find name:',r2
urlcomic = r[0]
u = urllib.urlopen(urlcomic).read()
name = r2[0].replace(' ','').split(',')
year = name[-1]
day = name[-2]
filename = 'test.jpg'
if not os.path.exists(year):
os.makedirs(year)
# is gif file ,the name the file as gif
if ((u[0] is 'G') and (u[1] is 'I') and (u[2] is 'F')):
filename = year+day+'.gif'
else:
filename = year+day+'.jpg'
f = file(year+"/"+filename,"wb+")
f.write(u)
f.close()
def main():
url = hosts+initpos
while(True):
c = getpage(url)
savecomic(c,pcomic)
u = getnextpos(c,pnext)
if u is None:
break
else:
url = hosts+u
if __name__ == '__main__':
main()
Ⅱ 怎样的爬虫架构能把一台机器的配置发挥到极限
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联逗网地上。那么,你需要把所有的网页都看一遍。怎么办呢看没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了逗国内新闻地那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回逗首页地。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢看
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢看需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢看Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢看
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = ""
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多逗简单地,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,逗朝阳区奋进路中华道地),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
逗路漫漫其修远兮,吾将上下而求索地。
所以,不要问怎么入门,直接上路就好了:)
Ⅲ 爬虫一般一分钟应该爬多少链接,他的效率要看什么了
你想达到来每天千万源级别的速度,建议试试前嗅的ForeSpider数据采集软件。我之前用火车、八爪鱼,开服务器采集,一个月采100多万条。用ForeSpider,用笔记本采集的,一天就几百万条。
从一个专业C++程序猿的角度说,网上流传的各种Java爬虫,Python爬虫,Java需要运行于C++开发的虚拟机上,Python只是脚本语言,采集效率和性能如何能与强大的C++相提并论?C++直接控制系统的底层,对内存空间的控制和节省都是其他语言无法竞争的。ForeSpider的开发语言是C++,从语言层面来讲,火车采集器是不具备这样的能力的。
forespider在台式机上运行一天可以采400万,在服务器上一天可以采8000万,而且自带免费的千万级别数据库,免安装,可以直接入库。还支持MySQL、ODBC数据库。
Ⅳ 刚开始学习 Python 到可以写出一个爬虫大约需要多长时间
学习 Python 的三种境界
前言
王国维在《人间词话》中将读书分为了三种境界:“古今之成大事业、大学问者,必经过三种之境界:‘昨夜西风凋碧树,独上高楼,望尽天涯路’。此第一境也。‘衣带渐宽终不悔,为伊消得人憔悴。’此第二境也。‘众里寻他千网络,蓦然回首,那人却在灯火阑珊处’。此第三境也。我从入门Python到现在也没有多少时间,所以写如此大的一个题目必定会引发各种批判,当然我没有想造一个大新闻,只是想根据自己的学习历程做一个简单的总结,同时将这三个阶段对应的一些好的书籍简单介绍介绍。
正文
Python的用途十分广泛,不同的程序员将其用于不用的领域,不同的程序员将自己的代码打包成库,供其他程序员使用,从而少造轮子,各种库的使用,加之Python本身的灵活性、易读性,易写性,使用的人越来越多,tiobe统计编程语言的使用率如下:Python在一年之间使用排行榜中上升了3名,而且各大公司在招聘员工的时候如果能掌握Python,肯定是一个加分项,因为Python在文本处理,小程序的写作方面具有太强的优势,前段时间一个朋友让帮忙改下他们公司logo的颜色,第一个想到的就是用Python,女票让我帮她预处理大数据,第一个想到的仍然是Python等等,当然并没有说其他语言不好,也不是为了讨论哪种语言更好,只是Python确实是一门会让人幸福的语言,下面粗浅的说说我对Python学习过程中的境界划分以及推荐书籍。
第一个阶段:初级,掌握Python的语法和一些常用库的使用
这里首先推荐在腾讯官方课程平台上进行直播学习,有号就能无偿一直学,每天晚上都是高清直播(企鹅球球:1129中间是834最后加上这个903连在一起就可以了),除此之外基于python2.7在网上的书籍适合于重头开始一直读完,作为一个开发人员,除了基本的语法,这本书里面提到了一些其他的常用的库,看了廖老师写的很多东西,感觉他的思路,以及写博客写书的高度,概括性,原理性都十分好,这本书读完之后,相信就可以动手写很多东西了,可以尽情的玩转Python解释器了。
另外还有一本书《Python参考手册》,这本书也十分的有用,关于Python的方方面面基本都囊括在内,可以作为一本Python字典来查询使用方法,十分好用。
掌握一门语言最好的方法就是用它,所以我觉得边学语法边刷Leetcode是掌握Python最快的方式之一。
很多只需要将Python作为脚本或者就是写一些小程序处理处理文本的话,到这一个阶段就足够了,这个阶段已经可以帮我们完成很多很多的事情了。但是如果是一个专业学习Python的,恐怕还需要努力的升级:首先,国内的大多数人都是学习了其他语言(C,C++,Java等)之后来学习Python的,所以Python和这些语言的不同,也就是pythonic的东西需要一些时间去学习了解和掌握;另外,对于自己领域的领域的库构架的掌握也需要很长的时间去掌握;最后,如果想独立完成一个Python的项目,项目的布局,发布,开源等都是需要考虑的问题。
第二个阶段:中级,掌握自己特定领域的库,掌握pythonic写法,非常熟悉Python的特性
推荐的第一本书是《编写高质量代码–改善python程序的91个建议》,这本书大概的提了下Python工程的文件布局,更多的总结了如何写出pythonic的代码,另外,也介绍了一些常用的库。
要想深入的了解Python,有的时候看看Python的源码也是很重要的,自己通过读懂源码,来彻底的了解Python的核心机制,这里推荐《Python源码剖析——深度探索动态语言核心技术》,这本书并没有看完,只是在需要深入了解Python某个功能或者数据结构的时候看看相关章节,也觉得受益匪浅。
自己领域的书籍和资料也肯定很多,比如web开发的构架都有很多,只有了解熟悉了所有构架,在选择的时候才能衡量利弊,然后深入掌握某些构架。
这个阶段过后,可以写出pythonic代码,可以通过PEP8的检查,可以为开源社区做贡献了,可以将一个Python文件写的十分好,但是如果要用Python开发一个大型项目,还是有很多东西需要掌握的,比如项目的文档,项目的发布,下载,项目性能和案例等等。
第三个阶段:高级,从整个工程项目着眼,考虑document,distribution,性能优化等
目前只看了一本书《the hacker guide to python》,看的是英文版的,这本书对项目的布局,文档,性能,发布等做了很多详细的介绍,我觉得写的还是很不错,只不过本人还需要再读几遍。
对于大多数人来说,很难有机会从头开始一个有意义的大型工程项目,所以自己可以用Python实现一些简单的功能,简单的项目,这个灵感可以去知乎或者quora搜索,很多前辈都分享了自己的经验。
从大局入手,规划好项目的布局,设定好相应的文档说明,提供工程下载安装的方法,带几个demo,每个类,每个函数,每行代码都反复推敲,写出pythonic的程序,相信这时候Python于我们便是信手拈来了!
总结
本文只是我认为的学习Python的三种境界,以我粗浅之眼光,肯定有太多太多的不足,而且自己也就是一个介于初级和高级Python程序员的水平,写这个文章,也算是给自己设立的一个目标吧。
Ⅳ 爬虫之类的脚本一般开多少个线程比较好其实
开发网络爬虫应该选择Nutch、Crawler4j、WebMagic、scrapy、WebCollector还是其他的?这里按照我的经验随便扯淡一下:上面说的爬虫,基本可以分3类:1.分布式爬虫:Nutch
2.JAVA单机爬虫:Crawler4j、WebMagic、WebCollector
3. 非JAVA单机爬虫:scrapy
第一类:分布式爬虫
爬虫使用分布式,主要是解决两个问题:
1)海量URL管理
2)网速
现在比较流行的分布式爬虫,是Apache的Nutch。但是对于大多数用户来说,Nutch是这几类爬虫里,最不好的选择,理由如下:
1)Nutch是为搜索引擎设计的爬虫,大多数用户是需要一个做精准数据爬取(精抽取)的爬虫。Nutch运行的一套流程里,有三分之二是为了搜索引擎而设计的。对精抽取没有太大的意义。也就是说,用Nutch做数据抽取,会浪费很多的时间在不必要的计算上。而且如果你试图通过对Nutch进行二次开发,来使得它适用于精抽取的业务,基本上就要破坏Nutch的框架,把Nutch改的面目全非,有修改Nutch的能力,真的不如自己重新写一个分布式爬虫框架了。
2)Nutch依赖hadoop运行,hadoop本身会消耗很多的时间。如果集群机器数量较少,爬取速度反而不如单机爬虫快。
Ⅵ 爬虫在爬取过程中怎么把url分配到多台机器
首先我看到你的问题第一想法就是,把所有url存储到redis数据库,然后所有的爬虫在数据库中提取url,
你的想法应该是scrapy分布式爬虫。
Ⅶ 什么叫爬虫技术有什么作用
爬虫技术
爬虫主要针对与网络网页,又称网络爬虫、网络蜘蛛,可以自动化浏览网络中的信息,或者说是一种网络机器人。它们被广泛用于互联网搜索引擎或其他类似网站,以获取或更新这些网站的内容和检索方式。它们可以自动采集所有其能够访问到的页面内容,以便程序做下一步的处理。
爬虫技术步骤
我们绝大多数人每天都使用网络 - 用于新闻,购物,社交以及您可以想象的任何类型的活动。但是,当从网络上获取数据用于分析或研究目的时,则需要以更技术性的方式查看Web内容 - 将其拆分为由其组成的构建块,然后将它们重新组合为结构化的,机器可读数据集。通常文本Web内容转换为数据分为以下三个基本步骤 :
爬虫:
Web爬虫是一种自动访问网页的脚本或机器人,其作用是从网页抓取原始数据 -最终用户在屏幕上看到的各种元素(字符、图片)。 其工作就像是在网页上进行ctrl + a(全选内容),ctrl + c(复制内容),ctrl + v(粘贴内容)按钮的机器人(当然实质上不是那么简单)。
通常情况下,爬虫不会停留在一个网页上,而是根据某些预定逻辑在停止之前抓取一系列网址 。 例如,它可能会跟踪它找到的每个链接,然后抓取该网站。当然在这个过程中,需要优先考虑您抓取的网站数量,以及您可以投入到任务中的资源量(存储,处理,带宽等)。
解析:
解析意味着从数据集或文本块中提取相关信息组件,以便以后可以容易地访问它们并将其用于其他操作。要将网页转换为实际上对研究或分析有用的数据,我们需要以一种使数据易于根据定义的参数集进行搜索,分类和服务的方式进行解析。
存储和检索:
最后,在获得所需的数据并将其分解为有用的组件之后,通过可扩展的方法来将所有提取和解析的数据存储在数据库或集群中,然后创建一个允许用户可及时查找相关数据集或提取的功能。
爬虫技术有什么用
1、网络数据采集
利用爬虫自动采集互联网中的信息(图片、文字、链接等),采集回来后进行相应的储存与处理。并按照一定的规则和筛选标准进行数据归类形成数据库文件的一个过程。但在这个过程中,首先需要明确要采集的信息是什么,当你将采集的条件收集得足够精确时,采集的内容就越接近你想要的。
2、大数据分析
大数据时代,要进行数据分析,首先要有数据源,通过爬虫技术可以获得等多的数据源。在进行大数据分析或者进行数据挖掘的时候,数据源可以从某些提供数据统计的网站获得,也可以从某些文献或内部资料中获得,但从这些获得数据的方式,有时很难满足我们对数据的需求,此时就可以利用爬虫技术,自动地从互联网中获取需要的数据内容,并将这些数据内容作为数据源,从而进行更深层次的数据分析。
3、网页分析
通过对网页数据进行爬虫采集,在获得网站访问量、客户着陆页、网页关键词权重等基本数据的情况下,分析网页数据,从中发现访客访问网站的规律和特点,并将这些规律与网络营销策略等相结合,从而发现目前网络营销活动和运营中可能存在的问题和机遇,并为进一步修正或重新制定策略提供依据。