机器人视觉是什么意思
① 机器人视觉的三大要求是什么
第一定律
机器人不得伤害人,或任人受到伤害而无所作为;
第二定律
机器人应服从人的一切命令,但命令与第一定律相抵触时例外;
第三定律
机器人必须保护自己的存在,但不得与第一、第二定律相抵触。
② 机器视觉说的是什么啊
视觉来系统配合硬件,如视觉自光源、工业相机、工业镜头、光源控制器等,便构成了机器视觉。机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统最基本的特点就是提高生产的灵活性和自动化程度。在一些不适于人工作业的危险工作环境或者人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。
例如,在生产流水线上对产品的检测,机器视觉可以自行判断流水线上的产品是否有瑕疵、缺陷,搭配机械手对残次的产品进行分拣剔除,并且可以长时间工作,高效准确,可有效代替人工进行QC质检,进而为企业节省了人工成本。
③ 什么是机器视觉
美国制造工程师协会( Society of Manufacturing Engineers)机器视觉分会和美国机器人工业协会(RIA Robotic Instries Association)的自动化视觉分会对机器视觉下的定义为:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置”。
在现代工业自动化生产中,涉及到各种各样的检验、生产监视及零件识别应用,例如零配件批量加工的尺寸检查,自动装配的完整性检查,电子装配线的元件自动定位,IC上的字符识别等。通常人眼无法连续、稳定地完成这些带有高度重复性和智能性的工作,其它物理量传感器也难有用武之地。由此人们开始考虑利用光电成像系统采集被控目标的图像,而后经计算机或专用的图像处理模块进行数字化处理,根据图像的像素分布、亮度和颜色等信息,来进行尺寸、形状、颜色等的判别。这样,就把计算机的快速性、可重复性,与人眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉的概念。
工业线扫描相机系统 一个成功的机器视觉系统是一个经过细致工程处理来满足一系列明确要求的系统。当这些要求完全确定后,这个系统就设计并建立来满足这些精确的要求。机器视觉的优点包括以下几点:
■ 精度高
作为一个精确的测量仪器,设计优秀的视觉系统能够对一千个或更多部件的一个进行空间测量。因为此种测量不需要接触,所以对脆弱部件没有磨损和危险。
■ 连续性
视觉系统可以使人们免受疲劳之苦。因为没有人工操作者,也就没有了人为造成的操作变化。多个系统可以设定单独运行。
■ 成本效率高
随着计算机处理器价格的急剧下降,机器视觉系统成本效率也变得越来越高。在欧美,一个价值10000美元的视觉系统可以轻松取代三个人工探测者,而每个探测者每年需要20000美元的工资。而在中国,比较夸张的应用是一机视觉设备,可以代替几百上千人进行测试测量。另外,视觉系统的操作和维持费用非常低。
■ 灵活性
视觉系统能够进行各种不同的测量。当应用变化以后,只需软件做相应变化或者升级以适应新的需求即可。
机器视觉系统比光学或机器传感器有更好的可适应性。它们使自动机器具有了多样性、灵活性和可重组性。当需要改变生产过程时,对机器视觉来说“工具更换”仅仅是软件的变换而不是更换昂贵的硬件。当生产线重组后,视觉系统往往可以重复使用。
④ 什么是工业机器人的视觉系统
工业机器人的视觉引导系统应用包含了以下的几个方面:自动的堆垛和自动卸跺;传送带的追踪;组件的装配;机器人的应用及其检测;机器人上下料;机器人的引导点胶等。
通过工业机器人视觉引导系统这几种方面,把相机安装在机器人的手臂上,随时跟随机器人的移动,相机可以通过一次拍摄定位出视野范围内的所有的产品,通过数据传输,引导机器人抓取,并摆放在设定好的位置上。
机器视觉系统,在生产线上,人来做此类测量和判断会因疲劳、个人之间的差异等产生误差和错误,但是机器却会不知疲倦地、稳定地进行下去。一般来说,机器视觉系统包括了照明系统、镜头、摄像系统和图像处理系统。
对于每一个应用,我们都需要考虑系统的运行速度和图像的处理速度、使用彩色还是黑白摄像机、检测目标的尺寸还是检测目标有无缺陷、视场需要多大、分辨率需要多高、对比度需要多大等。从功能上来看,典型的机器视觉系统可以分为:图像采集部分、图像处理部分和运动控制部分。
(4)机器人视觉是什么意思扩展阅读
机器视觉系统工作过程
一个完整的机器视觉系统的主要工作过程如下:
1、工件定位检测器探测到物体已经运动至接近摄像系统的视野中心,向图像采集部分发送触发脉冲。
2、图像采集部分按照事先设定的程序和延时,分别向摄像机和照明系统发出启动脉冲。
3、摄像机停止目前的扫描,重新开始新的一帧扫描,或者摄像机在启动脉冲来到之前处于等待状态,启动脉冲到来后启动一帧扫描。
4、摄像机开始新的一帧扫描之前打开曝光机构,曝光时间可以事先设定。
5、另一个启动脉冲打开灯光照明,灯光的开启时间应该与摄像机的曝光时间匹配。
6、摄像机曝光后,正式开始一帧图像的扫描和输出。
7、图像采集部分接收模拟视频信号通过A/D将其数字化,或者是直接接收摄像机数字化后的数字视频数据。
8、图像采集部分将数字图像存放在处理器或计算机的内存中。
9、处理器对图像进行处理、分析、识别,获得测量结果或逻辑控制值。
10、处理结果控制流水线的动作、进行定位、纠正运动的误差等。
⑤ 机器人视觉与计算机视觉:有什么不同
计算机视觉与机器视觉,首先是应用场景不一样,就像视远图像赵旭回答的那样:你把摄像头对着人就是CV,对着车间就是MV。
计算机视觉和机器视觉应用场景不同,就像拉货车和载客车是的,侧重点不同而已,一个侧重人工智能分支,一个侧重工业应用!简单说起来的话,计算机视觉偏重于深度学习并且偏向软件,机器视觉偏重于特征识别同时对硬件方面要求也比较高,不过随着对智能识别要求越来越高的发展,这两个方向毕竟会互相渗透互相融合,区别也仅仅限于应用领域不同而已。
其次,我感觉最大的区别,在于技术要求的侧重点不一样,甚至差别很大。
计算机视觉,主要是对质的分析,比如分类识别,这是一个杯子那是一条狗。或者做身份确认,比如人脸识别,车牌识别。或者做行为分析,比如人员入侵,徘徊,遗留物,人群聚集等。
机器视觉,主要侧重对量的分析,比如通过视觉去测量一个零件的直径,一般来说,对准确度要求很高。我记得以前接触过一个需求: 视觉测量铁路道岔缺口。哥刚毕业的时候在铁路上班,做过控制系统,还开过内燃机车,很清楚道岔缺口的重要性,这玩意儿你说要是测不准,呵呵:)
当然,也不能完全按质或量一刀切,有些计算机视觉应用也需要分析量,比如商场的人数统计。有些机器视觉也需要分析质,比如零件自动分拣。但,计算机视觉一般来说对量的要求不会很高,商场人数统计误差个百分之几死不了人的,但机器视觉真的会,比如那个道岔缺口测量。
既然要求这么高,是不是机器视觉就比计算机视觉难呢?也不是的,应该说各有各的难处。
计算机视觉的应用场景相对复杂,要识别的物体类型也多,形状不规则,规律性不强。有些时候甚至很难用客观量作为识别的依据,比如识别年龄,性别。所以深度学习比较适合计算机视觉。而且光线,距离,角度等前提条件,往往是动态的,所以对于准确度要求,一般来说要低一些。
机器视觉则刚好相反,场景相对简单固定,识别的类型少(在同一个应用中),规则且有规律,但对准确度,处理速度要求都比较高。关于速度,一般机器视觉的分辨率远高于计算机视觉,而且往往要求实时,所以处理速度很关键,目前基本上不适合采用深度学习。
以上讨论的是技术,商业方面,计算机视觉的应用面更广一些,毕竟很多业务是跟人相关,比如人脸识别,行为分析等,很多垂直领域都有计算机视觉潜在需求,相对来说,更适合创业;
而机器视觉顾名思义,业务主要跟机器相关,而且对准确度甚至安全性要求很高,也就在资质品牌方面有较高的门槛,所以寡头垄断严重,一般来说,更适合上班而不是创业。
机器视觉(Machine Vision, MV) & 计算机视觉(Computer Vision, CV)
从学科分类上, 二者都被认为是 Artificial Intelligence 下属科目.
有几个分支:
一个是图像处理,主要是信号与系统,统计,优化
一个是求解景物与图像之间的关系,如立体视觉、三维重建,主要是几何
一个是模式识别,例如如何分割图像、识别目标,主要是人工智能
但实际提及时, 主观感觉上
MV 更多注重广义图像信号(激光,摄像头)与自动化控制(生产线)方面的应用。
CV 更多注重(2D, 3D)图像信号本身的研究以及和图像相关的交叉学科研究(医学图像分析,地图导航)。
⑥ 机器人视觉是什么
首先来阐述一下,我们为什么要利用机器人视觉技术来识别“二维码”。其实大版家都不知权道二维码的由来,但是大家肯定都知道去超市买东西最后结账的时候,会有机器扫描物品上的条形码然后显示价格。条形码就相当于一维条形码,只有x轴有视觉识别系统能识别的出来的二进制编码;二维码又称二维条码,是它里面黑白相间的小方块其实已经被换算成二进制编码,而且是x、y轴都有相应的换算,然后才可以被机器在线检测到。
到这边大家大概知道了机器是如何识别二维码的了吧,但是这才算是机器人视觉的初级技术,在苏州机器视觉检测领域,现在的程度是我们不需要将被识别的物体换算成二进制编码。力泰科技正在做的就是设计视觉识别系统,能够直接接收人类所看到的物体,进而理解并分析,然后系统自己就会将识别到的物体转换成结果输出到用户的需求。看!这就是机器人视觉强大的功能,未来这项技术会运用到各行各业中,尤其是锻造工业,可以替代工人体验艰苦的环境。
⑦ 什么是机器视觉
在地球上,以人类为首的所有动物,都会感受外界所传来的各种信息,借以掌握外界的状况而采取行动。为了感受信息,人类拥有视觉、听觉、嗅觉、触觉、味觉等5种感觉,也就是所谓的“五感”。虽然人类可以从眼睛、耳朵、鼻子、皮肤、舌头等处获得信息,但是获取信息最多的还是视觉。在借助“五感”获得的信息中,大约有80%来自视觉。长久以来,人类一直梦想着能够制造出具有智能的机器,而智能机器实现的基础就是机器视觉技术。那么什么是机器视觉呢?美国制造工程师协会(,SME)机器视觉分会和美国机器人工业协会(RoboticInstriesAssociation,RIA)自动化视觉分会为机器视觉作了如下定义:“机器视觉是通过光学的装置和非接触的传感器自动地接收和处理一个真实物体的图像,以获得所需信息或用于控制机器人运动的装置。”通俗地说,机器视觉就是用机器模拟生物宏观视觉功能,代替人眼来做测量和判断。首先,通过图像传感器将被摄取的目标转化成为图像信号,传送给专用的图像处理系统,根据像素分布、亮度和颜色等信息,转变成数字化信号;随后,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、长度、数量、位置等;最后,根据预设的容许度和其他条件输出结果,如尺寸、角度、偏移量、个数、合格/不合格、有无等。从广义角度来看,凡是通过光学装置获取真实物体的信息以及对相关信息的处理与执行都是机器视觉,这就包括了可见视觉以及非可见视觉,甚至包括人类视觉不能直接观察到的、物体内部信息的获取与处理等。
科学家们通过研究发现,人脑中许多组织都参与了视觉信息的处理过程,因而能够轻易地处理视觉方面的问题。但是视觉认知作为一个复杂奥妙的过程,人类对其还知之甚少,因而制造出具有视觉功能的智能机器的梦想也一直难以实现。随着视觉传感技术、信息处理技术和计算机技术等的迅猛发展,具有视觉功能的智能机器开始被人类制造出来,并逐渐形成了机器视觉的学科和产业。对于智能机器而言,赋予其人类视觉功能是极其重要的,于是人们把计算机的快速性、可靠性、结果的可重复性与人类视觉的高度智能化和抽象化能力结合起来,形成一门新的学科———机器视觉。
⑧ 机器视觉和机器人视觉是一个意思吗
差不多的,都是在设备上加装视觉系统,来提高整个设备的智能化程度的。
⑨ 机器人视觉
1、单目视觉是无法准确获得深度信息的,即他只能得到平面信息。不能得到立体信息。深度信息,不一定指目标到相机之间的距离,也可以反应其它的信息,如某个物体的网络、相对位置之类的。不过一定都是跟光轴方向的深度有关。单目视觉可以测量距离,是指测量水平宽或水平高上的距离,与相机、镜头的光轴是垂直的平面上的距离测量。其实你可以不用超声波测距,现在双目视觉也在应用于实践,可以考虑使用双目视觉测量立体信息。
2、得到信息,如果是避障的话,主要就是指轮廓、宽、高,宽可能更重要些,因为只要前面有东西,需要绕开,要绕多远,只需要有轮廓就可以了,其它的信息是不需要的。当然也可以获得其它信息,如颜色、类别等。
3、看需要,像图像增强、灰度化、滤波、二值化等,都是属于预处理,如果图像效果好,可以不需要。而边缘查找、模式匹配、几何匹配、圆、直线、粒子分析、字符识别、颜色识别等,是特征提取类的,不一定所有的都会用,选择你自己需要的用即可。
4、标定,如果仅仅只是为了处理数据,不标定也可以,这样出来的数据只是以像素为单位的;一般人们可能不太好理解像素,因此需要转换成世界坐标,这样是为了便于人们理解距离到底有多少。如一个物体宽1000像素,高750像素。这样人们可能比较难理解,而其世界坐标可能是长100mm、宽75mm,这样像素坐标系与世界坐标第的转换当量就为100mm/1000pixel=0.1mm/pixel,其它再测量得到某个像素值时,只需要乘以这个当量,就可以得到世界坐标了。