人工智能与机器学习技术是什么
❶ 人工智能,机器学习,深度学习是什么关系
人工智能
人工智能英文缩写为AI,它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学研究领域的一个重要分支,又是众多学科的一个交叉学科,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能包括众多的分支领域,比如大家熟悉的机器学习、自然语言理解和模式识别等。
机器学习
机器学习属于人工智能研究与应用的一个分支领域。机器学习的研究更加偏向理论性,其目的更偏向于是研究一种为了让计算机不断从数据中学习知识,而使机器学习得到的结果不断接近目标函数的理论。
机器学习,引用卡内基梅隆大学机器学习研究领域的着名教授Tom Mitchell的经典定义:
如果一个程序在使用既有的经验E(Experience)来执行某类任务T(Task)的过程中被认为是“具备学习能力的”,那么它一定要展现出:利用现有的经验E,不断改善其完成既定任务T的性能(Performance)的特质。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。在我们当下的生活中,语音输入识别、手写输入识别等技术,识别率相比之前若干年的技术识别率提升非常巨大,达到了将近97%以上,大家可以在各自的手机上体验这些功能,这些技术来自于机器学习技术的应用。
深度学习
深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。晦涩难懂的概念,略微有些难以理解,但是在其高冷的背后,却有深远的应用场景和未来。
严格意义上说,人工智能和机器学习没有直接关系,只不过是机器学习的方法被大量的应用于解决人工智能的问题而已。目前机器学习是人工智能的一种实现方式,也是最重要的实现方式。
深度学习是机器学习比较火的一个方向,其本身是神经网络算法的衍生,在图像、语音等富媒体的分类和识别上取得了非常好的效果。
❷ 人工智能技术包括哪些
人工智能包括五大核心技术:
1.计算机视觉:计算机视觉技术运用由图回像处理操作及机器学答习等技术所组成的序列来将图像分析任务分解为便于管理的小块任务。
2.机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。
3.自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。例如自动识别文档中被提及的人物、地点等,或将合同中的条款提取出来制作成表。
4.机器人技术:近年来,随着算法等核心技术提升,机器人取得重要突破。例如无人机、家务机器人、医疗机器人等。
5.生物识别技术:生物识别可融合计算机、光学、声学、生物传感器、生物统计学,利用人体固有的生体特性如指纹、人脸、虹膜、静脉、声音、步态等进行个人身份鉴定,最初运用于司法鉴定。
❸ 人工智能,机器学习与深度学习是什么意思
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的回理论、方法、技术答及应用系统的一门新的技术科学。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
机器学习(Machine Learning)是一门专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的学科。
准星云学科技有限公司推出的AI-MATH高考机器人就是典型的人工智能案例,可以在断网的情况下独立进行答题。该公司后续推出产品的“豆豆数学”便是基于该机器人技术之上的衍生品。豆豆数学是全国第一家可以拍照诊断作业的学生数学辅导app,也是第一家可以录入任何教材教辅的老师辅助教学app,目前已在多所学校开始了全面推广,代理商遍布全国。
❹ 人工智能,机器学习和深度学习的区别与联系
一、人工智能
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等。
人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也有可能超过人的智能。
二、数据挖掘
数据挖掘(Data Mining),顾名思义就是从海量数据中“挖掘”隐藏信息,按照教科书的说法,这里的数据是“大量的、不完全的、有噪声的、模糊的、随机的实际应用数据”,信息指的是“隐含的、规律性的、人们事先未知的、但又是潜在有用的并且最终可理解的信息和知识”。在商业环境中,企业希望让存放在数据库中的数据能“说话”,支持决策。所以,数据挖掘更偏向应用。
数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
三、机器学习
机器学习(Machine Learning)是指用某些算法指导计算机利用已知数据得出适当的模型,并利用此模型对新的情境给出判断的过程。
❺ 人工智能,机器学习与深度学习,到底是什么关系
有人说,人工智能(AI)是未来,人工智能是科幻,人工智能也是我们日常生活中的一部分。这些评价可以说都是正确的,就看你指的是哪一种人工智能。
今年早些时候,Google DeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machine learning)和深度学习(deep learning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。
今天我们就用最简单的方法——同心圆,可视化地展现出它们三者的关系和应用。
向左转|向右转
人工神经网络(Artificial Neural Networks)是早期机器学习中的一个重要的算法,历经数十年风风雨雨。神经网络的原理是受我们大脑的生理结构——互相交叉相连的神经元启发。但与大脑中一个神经元可以连接一定距离内的任意神经元不同,人工神经网络具有离散的层、连接和数据传播的方向。
例如,我们可以把一幅图像切分成图像块,输入到神经网络的第一层。在第一层的每一个神经元都把数据传递到第二层。第二层的神经元也是完成类似的工作,把数据传递到第三层,以此类推,直到最后一层,然后生成结果。
每一个神经元都为它的输入分配权重,这个权重的正确与否与其执行的任务直接相关。最终的输出由这些权重加总来决定。
我们仍以停止(Stop)标志牌为例。将一个停止标志牌图像的所有元素都打碎,然后用神经元进行“检查”:八边形的外形、救火车般的红颜色、鲜明突出的字母、交通标志的典型尺寸和静止不动运动特性等等。神经网络的任务就是给出结论,它到底是不是一个停止标志牌。神经网络会根据所有权重,给出一个经过深思熟虑的猜测——“概率向量”。
这个例子里,系统可能会给出这样的结果:86%可能是一个停止标志牌;7%的可能是一个限速标志牌;5%的可能是一个风筝挂在树上等等。然后网络结构告知神经网络,它的结论是否正确。
即使是这个例子,也算是比较超前了。直到前不久,神经网络也还是为人工智能圈所淡忘。其实在人工智能出现的早期,神经网络就已经存在了,但神经网络对于“智能”的贡献微乎其微。主要问题是,即使是最基本的神经网络,也需要大量的运算。神经网络算法的运算需求难以得到满足。
不过,还是有一些虔诚的研究团队,以多伦多大学的Geoffrey Hinton为代表,坚持研究,实现了以超算为目标的并行算法的运行与概念证明。但也直到GPU得到广泛应用,这些努力才见到成效。
我们回过头来看这个停止标志识别的例子。神经网络是调制、训练出来的,时不时还是很容易出错的。它最需要的,就是训练。需要成百上千甚至几百万张图像来训练,直到神经元的输入的权值都被调制得十分精确,无论是否有雾,晴天还是雨天,每次都能得到正确的结果。
只有这个时候,我们才可以说神经网络成功地自学习到一个停止标志的样子;或者在Facebook的应用里,神经网络自学习了你妈妈的脸;又或者是2012年吴恩达(Andrew Ng)教授在Google实现了神经网络学习到猫的样子等等。
吴教授的突破在于,把这些神经网络从基础上显著地增大了。层数非常多,神经元也非常多,然后给系统输入海量的数据,来训练网络。在吴教授这里,数据是一千万YouTube视频中的图像。吴教授为深度学习(deep learning)加入了“深度”(deep)。这里的“深度”就是说神经网络中众多的层。
现在,经过深度学习训练的图像识别,在一些场景中甚至可以比人做得更好:从识别猫,到辨别血液中癌症的早期成分,到识别核磁共振成像中的肿瘤。Google的AlphaGo先是学会了如何下围棋,然后与它自己下棋训练。它训练自己神经网络的方法,就是不断地与自己下棋,反复地下,永不停歇。
|深度学习,给人工智能以璀璨的未来
深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
人工智能就在现在,就在明天。有了深度学习,人工智能甚至可以达到我们畅想的科幻小说一般。你的C-3PO我拿走了,你有你的终结者就好了。
❻ AI,机器学习和深度学习之间的区别是什么
用三层圆环举例
人工智能是最大的圈
机器学习是在人工智能中间的圈
深度学习是在机器学习中间的圈
❼ AI,机器学习和深度学习的区别到底是什么
简单来说,机器学习是实现人工智能的方法,深度学习是实现机器学习的技术专。机器学习属在实现人工智能时中需要人工辅助(半自动),而深度学习使该过程完全自动化
三者关系:
举个例子:通过机器学习算法来识别水果是橘子还是苹果,需要人工输入水果的特征数据,生成一定的算法模型,进而可以准确预测具有这些特征的水果的类型,而深度学习则能自动的去发现特征进而判断。
❽ 人工智能、机器学习和深度学习的区别
机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。
机器学习在实现人工智能时中需要人工辅助(半自动),而深度学习使该过程完全自动化
他们大致的关系就是:人工智能——机器学习——深度学习
❾ 机器学习和人工智能说的是一回事吗
严格意义上说,人工智能和机器学习没有直接关系,只不过目前机器学习的方法被版大量的权应用于解决人工智能的问题而已。早期的机器学习实际上是属于统计学,而非计算机科学的;而二十世纪九十年代之前的经典人工智能跟机器学习也没有半毛钱关系。
所以今天的AI和ML有很大的重叠,带并没有严格的从属关系。不过如果仅就计算机系内部来说,ML是属于AI的。AI今天已经变成了一个很泛泛的学科了。
此外如今很多不是学AI的人也愿意把它们的产品说成是“智能”XX,但真正学AI的人却从不用这俩字儿。
❿ 深度学习和人工智能是什么关系
其实深度学习、人工智能和机器学习一般都捆绑出现,通常大家也是痛不清楚这三者的关系,既然题主已经问了其中两个了,我这边就顺便把 3 个都说一说吧。
随着技术越来越发达,人工智能、机器学习、深度学习等名词越来越频繁地出现在我们视野中。但事实是,绝大多数人可能还不清楚人工智能、机器学习、深度学习是什么,三者之间有什么区别。今天我们就来看一下这个问题。
人工智能
人工智能(Artificial Intelligence),英文缩写为
AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
机器学习
机器学习是人工智能的核心,是使计算机拥有智能的根本途径。人通过学习变得越来越聪明,机器也能通过学习模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。这其中涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
机器学习能在学习的过程中通过经验和以往的数据,改善具体算法的性能。
深度学习
深度学习(Deep
Learning)是机器学习领域中一个新的研究方向,是用于建立、模拟人脑进行分析学习的神经网络,并模仿人脑的机制来解释数据的一种机器学习技术。它的基本特点是试图模仿大脑的神经元之间传递,处理信息的模式。最显著的应用是计算机视觉(CV)和自然语言处理(NLP)领域。相比于机器学习更强大,学习速度更快,带来的结果也更加准确可靠。
深度学习从统计学的角度来说,就是在预测数据的分布,从数据中学得一个模型然后再通过这个模型去预测新的数据。深度学习需要大量的模型和数据去训练,目前在语音和图像识别方面取得的效果很不错。
三者的关系与区别
机器学习是人工智能的实现方法,深度学习是机器学习的其中一种,深度学习比机器学习需要的数据和运算量更大,所以效果相对更好。人工智能包含了机器学习,机器学习包含了深度学习。