当前位置:首页 » 打标机器 » 机器学习是什么

机器学习是什么

发布时间: 2021-01-23 14:23:04

机器学习,是什么原理呢

机器学习是有一个很明确的定义的
就是利用经验改善系统性能的技术方专向
经验目前属指的就是数据,改善系统性能,指的就是能,改善完成一个特定任务的模型的精度,
目前的机器学习,通过数据来建模,最后完成一些分类任务,举个例子,利用过去一段时间的气象数据,来预测明天的气温是多少度

Ⅱ 机器学习都有什么用

人工智能,比如各类仿真、拟人应用,如机器人
医疗用于各类拟合预测
金融高频交易
互联网数据挖掘、关联
再具体一点,比如水产的水质预测
比如无人汽车,应用了机器学习和神经网络

Ⅲ 机器学习的含义是什么

机器学习其实是一门多领域交叉学科,它涉及到计算机科学、概率统计、函数版逼近论、最优化理论、控权制论、决策论、算法复杂度理论、实验科学等多个学科。机器学习的具体定义也因此有许多不同的说法,分别以某个相关学科的视角切入。但总体上讲,其关注的核心问题是如何用计算的方法模拟类人的学习行为:从历史经验中获取规律(或模型),并将其应用到新的类似场景中

Ⅳ 机器学习的含义是什么

机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。
机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。
第一阶段是在20世纪50年代中叶到60年代中叶,属于热烈时期。
第二阶段是在20世纪60年代中叶至70年代中叶,被称为机器学习的冷静时期。
第三阶段是从20世纪70年代中叶至80年代中叶,称为复兴时期。
机器学习的最新阶段始于1986年。
机器学习进入新阶段的重要表现在下列诸方面:
(1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。
(2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。
(3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。
(4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。
(5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。

Ⅳ 机器学习是什么

机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法内复杂度理论等多门学科。专门研究计容算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。深度学习的发展需要大数据跟计算力的支撑,思腾合力成立 10 年来深耕教育、科研、AI行业,80%做人工智能科研等领域研究的重点高校已应用思腾产品,为各专业老师和同学们的科学实验研究提供了优秀的GPU加速解决方案,以及中科院下属各科研机构、研究所等也跟思腾建立了长期的合作关系,助力国家各领域科学研究。

Ⅵ 什么是机器学习框架

机器学习框架是涵盖用于分类,回归,聚类,异常检测和数据准备的各种学习方法,并且其可以或可以不包括神经网络方法。比较流行的机器学习框架有:

1. Apache Singa

Apache Singa是一个用于在大型数据集上训练深度学习的通用分布式深度学习平台,它是基于分层抽象的简单开发模型设计的。它还支持各种当前流行的深度学习模型,有前馈模型(卷积神经网络,CNN),能量模型(受限玻尔兹曼机,RBM和循环神经网络,RNN),还为用户提供了许多内嵌层。

2. Amazon Machine Learning(AML)

Amazon Machine Learning(AML)是一种让各种级别使用机器学习技术的开发人员可轻松掌握的一个服务,提供了视觉工具和向导,可以指导在不必学习复杂的机器学习算法和技术的情况下建立机器学习。

3. Azure ML Studio

Azure ML Studio允许微软Azure的用户创建和训练模型,随后将这些模型转化为能被其他服务使用的API。尽管您可以将自己的Azure存储链接到更大模型的服务,但是每个账户模型数据的存储容量最多不超过10GB。

4. Caffe

Caffe是由伯克利视觉学习中心(BLVC)和社区贡献者们基于BSD-2-协议开发的一个深度学习框架,它秉承“表示、效率和模块化”的开发理念。模型和组合优化通过配置而不是硬编码实现,并且用户可根据需要在CPU处理和GPU处理之间进行切换,Caffe的高效性使其在实验研究和产业部署中的表现很完美,使用单个NVIDIA K40 GPU处理器每天即可处理超过六千万张图像 。

(6)机器学习是什么扩展阅读:

机器学习常见算法:

1、决策树算法

决策树及其变种是一类将输入空间分成不同的区域,每个区域有独立参数的算法。决策树算法充分利用了树形模型,根节点到一个叶子节点是一条分类的路径规则,每个叶子节点象征一个判断类别。先将样本分成不同的子集,再进行分割递推,直至每个子集得到同类型的样本,从根节点开始测试,到子树再到叶子节点,即可得出预测类别。此方法的特点是结构简单、处理数据效率较高。

2、朴素贝叶斯算法

朴素贝叶斯算法是一种分类算法。它不是单一算法,而是一系列算法,它们都有一个共同的原则,即被分类的每个特征都与任何其他特征的值无关。朴素贝叶斯分类器认为这些“特征”中的每一个都独立地贡献概率,而不管特征之间的任何相关性。然而,特征并不总是独立的,这通常被视为朴素贝叶斯算法的缺点。简而言之,朴素贝叶斯算法允许我们使用概率给出一组特征来预测一个类。与其他常见的分类方法相比,朴素贝叶斯算法需要的训练很少。在进行预测之前必须完成的唯一工作是找到特征的个体概率分布的参数,这通常可以快速且确定地完成。这意味着即使对于高维数据点或大量数据点,朴素贝叶斯分类器也可以表现良好。

3、支持向量机算法

基本思想可概括如下:首先,要利用一种变换将空间高维化,当然这种变换是非线性的,然后,在新的复杂空间取最优线性分类表面[8]。由此种方式获得的分类函数在形式上类似于神经网络算法。支持向量机是统计学习领域中一个代表性算法,但它与传统方式的思维方法很不同,输入空间、提高维度从而将问题简短化,使问题归结为线性可分的经典解问题。支持向量机应用于垃圾邮件识别,人脸识别等多种分类问题。

Ⅶ 机器学习算法指的是什么

机器学习算法一般包含:人工智能算法,回归算法,决策树算法,贝叶斯算法,聚类算法等

Ⅷ python的机器学习是什么

如果有兴趣不妨学一下。机器学习和普通的数据分析不同,它是让电脑主动找到一些数据的版内在权逻辑,而不是被动的求平均数、方差、线性回归等。
机器学习和人工智能略有差异,但原理是一样的,都是让电脑自己寻找数据的内在逻辑。不同之处是,机器学习常用比较经典的算法,如朴素贝叶斯、支持向量等,而人工智能常用各种神经网络,如DNN、CNN、RNN等。

Ⅸ 机器学习是什么

有一天,你想吃芒果了,你就到地边的小摊上去买芒果,你可以自己用手挑芒果。挑完摊主称重,根据重量付钱。
买芒果嘛,你只要不是重口味或者口味独特,还是选择最甜的,熟透了的芒果。因为你是根据重量来付钱的,又不是根据甜的程度或者熟了的程度,虽然摊主有时候会把好的芒果挑出一堆来单独涨价,但是这里这个摊主没这么做。
奶奶曾经告诉过你,芒果要买金黄色的,黄橙橙黄灿灿的,这样的最甜,不要买那些浅黄色的,因为还没熟透。
这样你就有了一点经验,虽然这点经验是别人直接教给我的:“甜芒果,就是金黄色的”。
生活没那么简单
回家,高高兴兴吃芒果,但是很快你会发现,并不是每个芒果都那么甜,有些不甜。奶奶的经验不是100%正确。只通过颜色判断芒果甜不甜,不是很靠谱。
你回忆后发现“好像是又大又金黄色的比较甜,那些小点的金黄色的芒果,得有一半是不甜。”(买了100个金黄色的芒果,有50个大的,都是甜的;另外有50个小的,其中有25个是不甜的。)
你总结出来一条经验规则了:大的金黄色的是最甜的。哈哈。你又高高兴兴的去买芒果。Shit,你熟悉的、你信得过的那个摊主走了。所以你得
换一个小摊买芒果了,但是新的摊主的芒果是产自不同的地方,你之前总结的经验可能不行了,你不知道能不能迁移过去(transfer
learning),于是你从头再开始尝试吧,发现这里小的,浅黄色的是最甜的!
一天,你表妹来找你玩,想吃芒果,但是她不在乎甜不甜,她喜欢吃多汁的。唉,以前的经验又不顶用了。你只能进行新的一轮实验,目标就是多汁的芒果(优化目标变了)。你又总结出,越软的越多汁。
你出国了读PhD,这里的芒果跟你家乡的差不太大了,这里绿色的最好吃。PhD毕业后,你结婚了,老婆不喜欢吃芒果,喜欢吃苹果。你积累的丰富的挑
if (color is bright yellow and size is big and sold by favorite
vendor): mango is sweet.
if (soft): mango is juicy.etc.
但是你想啊,这些规则越来越多的话,特征之间的组合啥的就越来越麻烦了,管理、使用都很麻烦。包括写程序实现啊,谁会笨到写这么多IfThen。机器学习
随机的选择了一个市场上的芒果,作为要研究的目标(training
data)。你可以用一个表格描述芒果属性和类型的关系,每一行可以放一个芒果的数据,包括芒果的物理属性(feature):颜色、大小、形状、软硬度、产地,等等,还有这么芒果的类型(output
variables):甜度、成熟度、多汁度。然后这就是一个多分类问题,或者回归问题,自动的从数据中学习出特征与芒果类型的各种关系等。
如果你用决策树算法,那么这个模型的样子就是你的规则库了;当然你可以使用其他模型,例如线性模型,这样就是特征的线性组合了。
甚至你的选择芒果的模型,稍微变化下就可以选择苹果了,迁移学习。
甚至你的模型会随着新的样本、新芒果种类进来后,变的越来越好,增量学习。转自-丕子 原文基础上稍作修改

Ⅹ 什么是机器学习

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重回点,到以“知识”为重点,答再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506