什么什么发动机器
1. 什么车的发动机最好
如果将直列发动机看成是夹角为0度的V型发动机,那么当两排汽缸的夹角扩大为度时,那就是水平对置发动机了。所有的汽缸呈水平对置排列,就像是拳击手在搏斗,活塞就是拳击手的拳头(当然拳头可以不止两个),你来我往,毫不示弱。水平对置发动机的英文名(Boxer Engine)意义就是“拳击手发动机”,可简称为B型发动机,如B6、B4,分别代表水平对置6缸和4缸发动机。
由于相邻两个汽缸水平对置,可以很简单地相互抵消振动,使发动机旋转更平稳。
水平对置发动机的重心低。由于它的气缸为“平放”,而不是像V型或直列发动机那样“斜放”或“立放”,因此降低了汽车的重心,同时又能让车头设计得又扁又低。这两些因素都能增强汽车的行驶稳定性。
由于水平对置发动机本身就左右对称,因此它可使变速器等放置在车身正中,让汽车左右重量对称,而不会像大多数汽车那样重心偏向一侧。
水平对置发动机的动力输出轴方向与传动轴方向一致,因此不需要改变动力传递方向或利用齿轮传动,而是可以直接与离合器、变速器对接,动力传递效率较高,使汽车的起跑和加速更迅猛。
水平对置发动机的缺点是维修不方便,而且各缸点火间隔独特,使其排气声响比较怪异,普通汽车极少装配水平对置发动机。现在世界上只有德国保时捷和日本富士两家车厂仍生产这种发动机。
许多人以为就像V型发动机的汽缸呈V形排列那样,W型发动机的汽缸排列形式也一定是呈W形,其实不然,它只是近似W形排列,严格说来还应属V型发动机,至少是V型发动机的一个变种。
将V型发动机的每侧汽缸再进行小角度的错开(如帕萨特W8的小角度为15度),就成了W型发动机。或者说W型发动机的汽缸排列形式是由两个小V形组成一个大V形。
W型与V型发动机相比可以将发动机做得更短一些,曲轴也可短些,这样就能节省发动机所占的空间,同时重量也可轻些,但它的宽度更大,使得发动机室更满。
W型发动机相对V型发动机最大的问题是发动机由一个整体被分割为两个部分,在运作时必然会引起很大的振动。针对这一问题,大众在W型发动机上设计了两个反相转动的平衡轴,让两个部分的振动在内部相互抵消。
德国大众汽车公司现有三种W型发动机W8、W12和W16。
W8发动机
现在只有帕萨特W8使用W8型发动机,排量为4升,最大功率为270马力/6000rpm。由于W8的长度较短,因此它可以纵置在并不太大的发动机室,为驾乘舱留出更大空间。
W12发动机
装用大众W12发动机的汽车有大众的旗舰车型辉腾、本特利新车GT和奥迪旗舰车型A8L60 三款量产车。另外大众的W12概念跑车也装用W12发动机。大众的W12发动机排量为6升,最大功率为420马力/6000rpm。
W16发动机
大众公司在200年北美车展上推出的布加迪EB16-4Veyron.概念车,装配一种W16缸的发动机,排量为8升,冲程和缸径均为86mm,64气门,最大功率为1001马力/6000rpm。
其实在1928年,布加迪就曾制造出两款U16型发动机来,分别装配在布加迪T45(3.8升)和T47(3升)赛车上,最大功率分别只有270马力/5000rpm和240马力/5000rpm。那可能是最早的16缸发动机了。
W18发动机
1998年,世界名车布加迪(Bugatti)被大众汽车公司收购,就在当年的巴黎国际车展上,大众推出一款装有18个汽缸发动机的布加迪EB118。此台W18发动机由大众开发,是世界上轿车上使用的汽缸数最多的发动机。它的排量为6.3升,最大功率555马力。18个汽缸分成三排(而不是像上述的W型发动机那样“兵分四路”),每排6个汽缸,就像是在V12发动机的中央又加了一台直6发动机。当时大众公司将此种发动机称为W型发动机,显然它与现在大众的W型发动机的汽缸排列方式有区别,不过笔者认为它的排列方式与W字母更近似。
还有一种知名度很高,但应用很少的发动机,这就是三角活塞旋转式发动机。转子发动机又称为米勒循环发动机。它采用三角转子旋转运动来控制压缩和排放,与传统的活塞往复式发动机的直线运动迥然不同。这种发动机由德国人菲加士·汪克尔发明,在总结前人的研究成果的基础上,解决了一些关键技术问题,研制成功第一台转子发动机。一般发动机是往复运动式发动机,工作时活塞在气缸里做往复直线运动,为了把活塞的直线运动转化为旋转运动,必须使用曲柄连杆机构。转子发动机则不同,它直接将可燃气的燃烧膨胀力转化为驱动扭矩。与往复式发动机相比,转子发动机取消了无用的直线运动,因而同样功率的转子发动机尺寸较小,重量较轻,而且振动和噪声较低,具有较大优势。转子发动机的运动特点是三角转子的中心绕输出轴中心公转的同时,三角转子本身又绕其中心自转。在三角转子转动时,以三角转子中心为中心的内齿圈与以输出轴中心为中心的齿轮啮合,齿轮固定在缸体上不转动,内齿圈与齿轮的齿数之比为3比2。上述运动关系使得三角转子顶点的运动轨迹(即汽缸壁的形状)似“8”字形。三角转子把汽缸分成三个独立空间,三个空间各自先后完成进气、压缩、做功和排气,三角转子自转一周,发动机点火做功三次。由于以上运动关系,输出轴的转速是转子自转速度的3倍,这与往复运动式发动机的活塞与曲轴1:1的运动关系完全不同。
CVVT是英文Continue Variable Valve Timing的缩写,翻译成中文就是连续可变气门正时机构,它是近些年来被逐渐应用于现代轿车上的众多可变气门正时技术中的一种。例如:宝马公司叫做 Vanos,丰田叫做VVTI,本田叫做VTEC,但不管叫做什么,他们的目的都是给不同的发动机工作状况下匹配最佳的气门重叠角(气门正时),只不过所实现的方法是不同的。
韩国现代轿车所开发的CVVT是一种通过电子液压控制系统改变凸轮轴打开进气门的时间早晚,从而控制所需的气门重叠角的技术。这项技术着重于第一个字母C (Continue连续),强调根据发动机的工作状况连续变化,时时控制气门重叠角的大小,从而改变气缸进气量。当发动机低速小负荷运转时(怠速状态),这时应延迟进气门打开时间,减小气门重叠角,以稳定燃烧状态;当发动机低速大负荷运转时(起步、加速、爬坡),应使进气门打开时间提前,增大气门重叠角,以获得更大的扭矩;当发动机高速大负荷运转时(高速行驶),也应延迟进气门打开时间,减小气门重叠角,从而提高发动机工作效率;当发动机处于中等工况时(中速匀速行驶),CVVT也会相对延迟进气门打开时间,减小气门重叠角,此时的目的是减少燃油消耗,降低污染排放。
CVVT系统包含以下零件:油压控制阀、进气凸轮齿盘、曲轴为止感应器、凸轮位置感应器、油泵、引擎电子控制单元(ECU)。
进气凸轮齿盘包含:由时规皮带所带动的外齿轮、连接进气凸轮的内齿轮与一个能在内外齿轮间移动的控制活塞。当活塞移动时在活塞上的螺旋齿轮会改变外齿轮的位置,进而改变正时的效果。而活塞的移动量由油压控制阀所决定的,油压控制阀是一电子控制阀其机油压力由油泵所控制,。当电脑(ECU)接受到输入信号时,例如引擎转速、进气空气量、节气门位置、引擎温度等以决定油压控制阀的操作。电脑也会利用凸轮位置感应器及曲轴位置感应器,来决定实际的进气凸轮的气门正时。
当发动机启动或关闭时油压控制阀位置受到改变,而使得进气凸轮正时出于延后状态。当引擎怠速或低速负荷时,正时也是处于延后的位置,比增进引擎稳定的工作状态。当在中符合时则进气凸轮在提前的位置,当中低速高负荷时则处于提前角位置增加扭矩输出。而在高速符合时则处于延迟位置以利于高转速操作。当引擎温度较低时凸轮位置则处于延迟位置,稳定怠速降低油耗。
HONDA车系列中最为人津津乐道的应该是那套名为“VTEC”系统及后来的i-VTEC系统。
VTEC系统的全名是“Variable Valve Timing and Lift Electronic Control”,中文翻译过来就是“可变气门相位及升程控制系统”,VTEC机构最早出现在1989年,发明者叫松泽健一,车型是“型格”INTEGRA(DA6) XSi和 RSi:
本田的VTEC引擎一直是享有"可变气门引擎的代名词"之称,它不只是输出马力超强,它还强调低转速能有排气标准环保又低油耗的特点,而这样完全不同的特点在同一具引擎上面发生, 就因为它在一支凸轮轴上有2种,甚至於3种不同角度的凸轮(凸轮),中.低转速用小角度凸轮,高转速时,就再切换成高角度的凸轮,所以才有两种完全不同性能表现的输出曲线而同一颗引擎上发生,但是就因为这样的特性,它也种下VTEC被批评成"stage"式的可变气门引擎!本田的工程师把它VTEC分成"平时驾驶"与"战时的激烈驾驶",所以在引擎转速的最两侧,都有被消费者们喜欢或抱怨的两极看法存在,这也是VTEC引擎长期在网上倍受争议的原因之一! 而Toyota的VVTL-i发表之后,VTEC的技术已经受到严厉的挑战,几个月后,本田发表的i-VTEC于加入"可连续性"变化的正时与重叠角的设计,配合原本的VTEC机置,使i-VTEC也跟VVTL-i一样达到"近似"完美的可变气门引擎!
VTEC如何切换凸轮(凸轮)的机置,在此voliron已不必多说,i-VTEC多的就是在VTEC引擎上加入VTC=valve overlap control,从名字就可以看出来,它也利用到跟VANOS与VVT-i类似的方式来"连续式"地转动凸轮轴的开与关,所以就达到了所谓的"气门重叠角的控制",这就是进.排气阀门的正时与开启的重叠时间的可变是由油压控制的VTC,使凸轮轴转动些角度(向右,向左),进而提早或延迟去驱动到valve的开或关的时间,这跟VVT-i中的controller有一样的功能!
就这样的原理,i-VTEC也跟VVTL-i一样的组合出"可连续性"变化的气门正时与气门重叠时间,"2-stage" 改变升程的可变气门机构於引擎的进气端与排气端;而i-VTEC身上也用上S2000一样的金属正时链条,而为了进一步改善低转速扭力,与高转速时更有效率与直接的换气,i-VTEC也加上可变进气歧管为标准装置,其中编号:K20C的引擎将在下一代的integra上使用,排气量2.0升的它有220ps的马力(日规),海外版也有200hp的性能输出!而STREAM上用的K20A,虽然也是"DOHC"的iVTEC,但是它只使用"进气端"有可变气门装置,也有2.0升154匹马力的性能(BMW的320i是150hp)更难能可贵的是,这颗i-VTEC引擎,2.0升居然有14.2km/L的低油耗实力,提前符合2010年才要施行的油耗效率(fuel efficiency),而排放的废气标准也远远低过LEV的低空污标准!
2. 汽车发动机什么型号的好
如果将直列发动机看成是夹角为0度的V型发动机,那么当两排汽缸的夹角扩大为180度时,那就是水平对置发动机了。所有的汽缸呈水平对置排列,就像是拳击手在搏斗,活塞就是拳击手的拳头(当然拳头可以不止两个),你来我往,毫不示弱。水平对置发动机的英文名(Boxer Engine)意义就是“拳击手发动机”,可简称为B型发动机,如B6、B4,分别代表水平对置6缸和4缸发动机。
由于相邻两个汽缸水平对置,可以很简单地相互抵消振动,使发动机旋转更平稳。
水平对置发动机的重心低。由于它的气缸为“平放”,而不是像V型或直列发动机那样“斜放”或“立放”,因此降低了汽车的重心,同时又能让车头设计得又扁又低。这两些因素都能增强汽车的行驶稳定性。
由于水平对置发动机本身就左右对称,因此它可使变速器等放置在车身正中,让汽车左右重量对称,而不会像大多数汽车那样重心偏向一侧。
水平对置发动机的动力输出轴方向与传动轴方向一致,因此不需要改变动力传递方向或利用齿轮传动,而是可以直接与离合器、变速器对接,动力传递效率较高,使汽车的起跑和加速更迅猛。
水平对置发动机的缺点是维修不方便,而且各缸点火间隔独特,使其排气声响比较怪异,普通汽车极少装配水平对置发动机。现在世界上只有德国保时捷和日本富士两家车厂仍生产这种发动机。
许多人以为就像V型发动机的汽缸呈V形排列那样,W型发动机的汽缸排列形式也一定是呈W形,其实不然,它只是近似W形排列,严格说来还应属V型发动机,至少是V型发动机的一个变种。
将V型发动机的每侧汽缸再进行小角度的错开(如帕萨特W8的小角度为15度),就成了W型发动机。或者说W型发动机的汽缸排列形式是由两个小V形组成一个大V形。
W型与V型发动机相比可以将发动机做得更短一些,曲轴也可短些,这样就能节省发动机所占的空间,同时重量也可轻些,但它的宽度更大,使得发动机室更满。
W型发动机相对V型发动机最大的问题是发动机由一个整体被分割为两个部分,在运作时必然会引起很大的振动。针对这一问题,大众在W型发动机上设计了两个反相转动的平衡轴,让两个部分的振动在内部相互抵消。
德国大众汽车公司现有三种W型发动机W8、W12和W16。
W8发动机
现在只有帕萨特W8使用W8型发动机,排量为4升,最大功率为270马力/6000rpm。由于W8的长度较短,因此它可以纵置在并不太大的发动机室,为驾乘舱留出更大空间。
W12发动机
装用大众W12发动机的汽车有大众的旗舰车型辉腾、本特利新车GT和奥迪旗舰车型A8L60 三款量产车。另外大众的W12概念跑车也装用W12发动机。大众的W12发动机排量为6升,最大功率为420马力/6000rpm。
W16发动机
大众公司在200年北美车展上推出的布加迪EB16-4Veyron.概念车,装配一种W16缸的发动机,排量为8升,冲程和缸径均为86mm,64气门,最大功率为1001马力/6000rpm。
其实在1928年,布加迪就曾制造出两款U16型发动机来,分别装配在布加迪T45(3.8升)和T47(3升)赛车上,最大功率分别只有270马力/5000rpm和240马力/5000rpm。那可能是最早的16缸发动机了。
W18发动机
1998年,世界名车布加迪(Bugatti)被大众汽车公司收购,就在当年的巴黎国际车展上,大众推出一款装有18个汽缸发动机的布加迪EB118。此台W18发动机由大众开发,是世界上轿车上使用的汽缸数最多的发动机。它的排量为6.3升,最大功率555马力。18个汽缸分成三排(而不是像上述的W型发动机那样“兵分四路”),每排6个汽缸,就像是在V12发动机的中央又加了一台直6发动机。当时大众公司将此种发动机称为W型发动机,显然它与现在大众的W型发动机的汽缸排列方式有区别,不过笔者认为它的排列方式与W字母更近似。
还有一种知名度很高,但应用很少的发动机,这就是三角活塞旋转式发动机。转子发动机又称为米勒循环发动机。它采用三角转子旋转运动来控制压缩和排放,与传统的活塞往复式发动机的直线运动迥然不同。这种发动机由德国人菲加士·汪克尔发明,在总结前人的研究成果的基础上,解决了一些关键技术问题,研制成功第一台转子发动机。一般发动机是往复运动式发动机,工作时活塞在气缸里做往复直线运动,为了把活塞的直线运动转化为旋转运动,必须使用曲柄连杆机构。转子发动机则不同,它直接将可燃气的燃烧膨胀力转化为驱动扭矩。与往复式发动机相比,转子发动机取消了无用的直线运动,因而同样功率的转子发动机尺寸较小,重量较轻,而且振动和噪声较低,具有较大优势。转子发动机的运动特点是三角转子的中心绕输出轴中心公转的同时,三角转子本身又绕其中心自转。在三角转子转动时,以三角转子中心为中心的内齿圈与以输出轴中心为中心的齿轮啮合,齿轮固定在缸体上不转动,内齿圈与齿轮的齿数之比为3比2。上述运动关系使得三角转子顶点的运动轨迹(即汽缸壁的形状)似“8”字形。三角转子把汽缸分成三个独立空间,三个空间各自先后完成进气、压缩、做功和排气,三角转子自转一周,发动机点火做功三次。由于以上运动关系,输出轴的转速是转子自转速度的3倍,这与往复运动式发动机的活塞与曲轴1:1的运动关系完全不同。
CVVT是英文Continue Variable Valve Timing的缩写,翻译成中文就是连续可变气门正时机构,它是近些年来被逐渐应用于现代轿车上的众多可变气门正时技术中的一种。例如:宝马公司叫做 Vanos,丰田叫做VVTI,本田叫做VTEC,但不管叫做什么,他们的目的都是给不同的发动机工作状况下匹配最佳的气门重叠角(气门正时),只不过所实现的方法是不同的。
韩国现代轿车所开发的CVVT是一种通过电子液压控制系统改变凸轮轴打开进气门的时间早晚,从而控制所需的气门重叠角的技术。这项技术着重于第一个字母C (Continue连续),强调根据发动机的工作状况连续变化,时时控制气门重叠角的大小,从而改变气缸进气量。当发动机低速小负荷运转时(怠速状态),这时应延迟进气门打开时间,减小气门重叠角,以稳定燃烧状态;当发动机低速大负荷运转时(起步、加速、爬坡),应使进气门打开时间提前,增大气门重叠角,以获得更大的扭矩;当发动机高速大负荷运转时(高速行驶),也应延迟进气门打开时间,减小气门重叠角,从而提高发动机工作效率;当发动机处于中等工况时(中速匀速行驶),CVVT也会相对延迟进气门打开时间,减小气门重叠角,此时的目的是减少燃油消耗,降低污染排放。
CVVT系统包含以下零件:油压控制阀、进气凸轮齿盘、曲轴为止感应器、凸轮位置感应器、油泵、引擎电子控制单元(ECU)。
进气凸轮齿盘包含:由时规皮带所带动的外齿轮、连接进气凸轮的内齿轮与一个能在内外齿轮间移动的控制活塞。当活塞移动时在活塞上的螺旋齿轮会改变外齿轮的位置,进而改变正时的效果。而活塞的移动量由油压控制阀所决定的,油压控制阀是一电子控制阀其机油压力由油泵所控制,。当电脑(ECU)接受到输入信号时,例如引擎转速、进气空气量、节气门位置、引擎温度等以决定油压控制阀的操作。电脑也会利用凸轮位置感应器及曲轴位置感应器,来决定实际的进气凸轮的气门正时。
当发动机启动或关闭时油压控制阀位置受到改变,而使得进气凸轮正时出于延后状态。当引擎怠速或低速负荷时,正时也是处于延后的位置,比增进引擎稳定的工作状态。当在中符合时则进气凸轮在提前的位置,当中低速高负荷时则处于提前角位置增加扭矩输出。而在高速符合时则处于延迟位置以利于高转速操作。当引擎温度较低时凸轮位置则处于延迟位置,稳定怠速降低油耗。
HONDA车系列中最为人津津乐道的应该是那套名为“VTEC”系统及后来的i-VTEC系统。
VTEC系统的全名是“Variable Valve Timing and Lift Electronic Control”,中文翻译过来就是“可变气门相位及升程控制系统”,VTEC机构最早出现在1989年,发明者叫松泽健一,车型是“型格”INTEGRA(DA6) XSi和 RSi:
本田的VTEC引擎一直是享有"可变气门引擎的代名词"之称,它不只是输出马力超强,它还强调低转速能有排气标准环保又低油耗的特点,而这样完全不同的特点在同一具引擎上面发生, 就因为它在一支凸轮轴上有2种,甚至於3种不同角度的凸轮(凸轮),中.低转速用小角度凸轮,高转速时,就再切换成高角度的凸轮,所以才有两种完全不同性能表现的输出曲线而同一颗引擎上发生,但是就因为这样的特性,它也种下VTEC被批评成"stage"式的可变气门引擎!本田的工程师把它VTEC分成"平时驾驶"与"战时的激烈驾驶",所以在引擎转速的最两侧,都有被消费者们喜欢或抱怨的两极看法存在,这也是VTEC引擎长期在网上倍受争议的原因之一! 而Toyota的VVTL-i发表之后,VTEC的技术已经受到严厉的挑战,几个月后,本田发表的i-VTEC于加入"可连续性"变化的正时与重叠角的设计,配合原本的VTEC机置,使i-VTEC也跟VVTL-i一样达到"近似"完美的可变气门引擎!
VTEC如何切换凸轮(凸轮)的机置,在此voliron已不必多说,i-VTEC多的就是在VTEC引擎上加入VTC=valve overlap control,从名字就可以看出来,它也利用到跟VANOS与VVT-i类似的方式来"连续式"地转动凸轮轴的开与关,所以就达到了所谓的"气门重叠角的控制",这就是进.排气阀门的正时与开启的重叠时间的可变是由油压控制的VTC,使凸轮轴转动些角度(向右,向左),进而提早或延迟去驱动到valve的开或关的时间,这跟VVT-i中的controller有一样的功能!
就这样的原理,i-VTEC也跟VVTL-i一样的组合出"可连续性"变化的气门正时与气门重叠时间,"2-stage" 改变升程的可变气门机构於引擎的进气端与排气端;而i-VTEC身上也用上S2000一样的金属正时链条,而为了进一步改善低转速扭力,与高转速时更有效率与直接的换气,i-VTEC也加上可变进气歧管为标准装置,其中编号:K20C的引擎将在下一代的integra上使用,排气量2.0升的它有220ps的马力(日规),海外版也有200hp的性能输出!而STREAM上用的K20A,虽然也是"DOHC"的iVTEC,但是它只使用"进气端"有可变气门装置,也有2.0升154匹马力的性能(BMW的320i是150hp)更难能可贵的是,这颗i-VTEC引擎,2.0升居然有14.2km/L的低油耗实力,提前符合2010年才要施行的油耗效率(fuel efficiency),而排放的废气标准也远远低过LEV的低空污标准!
3. 汽车的发动机制动器是什么
发动机制动是利用发抄动机的牵阻作用减慢车速,档位越低牵阻越明显,制动性越强。在下长坡道路行驶,挂入低速档利用发动机的牵阻作用可以减少制动器的负担和减少制动次数,防止制动过热引起制动力热衰减;在冰雪、泥泞的路面上行驶,应用发动机牵阻制动可以防止侧滑。
利用发动机制动是指抬起油门踏板,但不踏下离合器,利用发动机的压缩行程产生的压缩阻力,内摩擦力和进排气阻力对驱动轮形成制动作用。也就是“拖档走”--挂着档不给油,发动机对车没有牵引力。相反由于车轮转动带动了传动系,怠速下的发动机对车产生反作用的阻力,档位越高发动机对车的作用越小,反之越大。
4. 发动机分别包括什么
汽车发动机是汽车的动力装置,提供汽车的动力源,由两大机构五大系统组成(曲柄连杆机构和配气机构;燃料供给系、冷却系、润滑系、点火系和起动系),汽车发动机在五大系统的配合下,通过两大机构的连接和运转,将燃料的化学能转化为机械动能,将往复直线运动转化为旋转运动,发动机是汽车的“心脏”,为汽车运行提供基本的动力保障。
下面详细介绍一下两大机构和五大系统的组成部分及主要功能:
A.曲柄连杆机构:连杆、曲轴、轴瓦、飞轮、活塞、活塞环、活塞销、曲轴油封;是发动机实现工作循环,完成能量转换的主要运动零件
B.配气机构:汽缸盖、气门室盖罩、凸轮轴、气门、进气歧管、排气歧管、空气滤、消音器、三元催化、增压器、中冷器等;其功能是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程
C.冷却系:一般由水箱、水泵、散热器、风扇、节温器、水温表和放水开关组成;(汽车发动机采用两种冷却方式,即空气冷却和水冷却,目前我国汽车主流市场的发动机多采用水冷却。)其功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。
D.润滑系:发动机润滑系由机油泵、集滤器、机油滤清器、油道、限压阀、机油表、感压塞及油尺等组成;功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。
E.燃料系:汽油机燃料系由汽油箱、汽油表、汽油管、汽油滤清器、汽油泵、化油器、空气滤清器、进排气歧管等组成;功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去
F.启动系:起动机、点火开关、蓄电池;其功用是实现发动机启动过程。
G.点火系:火花塞、高压线、高压线圈、分电器。其功用是能够按时在火花塞电极间产生电火花。
5. 汽车发动机都有什么类型的
目前的发动机主要有L(直列)发动机,型发动机,W型发动机,水平对置发动机。另外比较特殊的就是转子发动机,这是马自达的专利。
V型发动机:V型发动机的气缸是两两左右叉开的,形成一定的夹角,从侧面看上去就像“V”一样,所以叫V型发动机。V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于6缸及6缸以上的发动机。现在的V型发动机主要有V6,V8,V10,V12这4种。
直列发动机:它的气缸排成一排,也就是一列,因此而得名。现在的直列发动机主要有L3,L4,L5,L6。 直列发动机的汽缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点则是功率较低。
W型发动机:W型发动机严格说来还是属于V型发动机的一种,只是将V型发动机两边的气缸再再分成两组,从侧面看就像“W”一样,因此得名。也可以说,W12发动机就是用两台V6发动机拼成的,其最大的好处就是结构紧凑,易于布置,有利于发动机舱的空间的优化,缺点就是结构过于复杂。W型发动机是大众的专利技术,只有大众即大众旗下的品牌才在使用W型发动机,目前主要有W12和W16。
水平对置发动机:其实也是属于V型发动机的一种,只是其气缸夹角为180度。水平对置发动机是一种最符合运动机械原理的汽车发动机组合形式,其制造成本和工艺难度相当高,目前世界上只有保时捷和斯巴鲁在使用。 水平对置发动机的最大优点是重心低。由于它的汽缸为“平放”,不仅降低了汽车的重心,还能让车头设计得又扁又低,这些因素都能增强汽车的行驶稳定性。 同时,水平对置的汽缸布局是一种对称稳定结构,这使得发动机的运转平顺性比V型发动机更好,运行时的功率损耗也是最小。
另外,由于活塞曲轴在左右运动时产生的振动互相抵消,进而实现了低噪音、低油耗。目前主要有水平对置4缸和6缸。
6. 什么发动机,是ea888吗
ea888是大众EA888发动机。
EA888系列发动机包括1.8L和2.0L两种排量:.8TSI最大功率为118kw(160PS)—5000-6200rpm,最大扭矩为250Nm—1500-4500rpm;2.0TSI最大功率可达147kw(200PS)—5100-6000rpm,最大扭矩为280Nm—1700-5000rpm。
这两种排量的发动机的机械结构基本一致,不同的是曲轴与活塞的连杆的长度,2.0TSI比1.8TSI的连杆有所缩短,曲轴半径加大,以增加排气量。而两者的活塞顶部结构也有所不同,主要是为了调节燃烧室的工作容积,从而保证一致的压缩比,实现相同的燃烧效果。
首批国产EA888系列发动机装备到一汽-大众迈腾和上海大众昊锐车型上。EA888系列发动机作为大众目前的主力发动机之一,现已搭载到大众旗下多种车型上,包括一汽-大众CC、速腾、上海大众途观、帕萨特等。
进气可变气门正时
EA888发动机采用了进气可变气门正时技术,能有效提高进排气效率。主要是通过位于进气凸轮轴的叶片式液压调节器来实现气门正时可变。
叶片式调节器由外壳体、内部叶片转子以及位于叶片转子内部的锁销组成。外壳体与外部的正时齿轮固定,由曲轴带动。而内部的叶片则直接与进气门凸轮轴固定,并与之一同旋转。
工作原理主要是通过凸轮轴调节阀控制相应管道中的液压机油,来驱动调节器中的叶片,进而带动凸轮轴旋转,实现气门开闭的提前或延迟,可调范围达到60°的曲轴转角。
缸内直喷系统
燃油供给系统是实现缸内直喷最为关键的一部分,燃油要喷入压力非常高的气缸内,就必须具备足够的喷射压力。
高压燃油泵是燃油加压的关键环节,EA888发动机的燃油泵是一个结构简单的单柱塞泵,靠进气凸轮轴上的四方(四点式)凸轮来驱动。四点式凸轮可使油泵供油行程和各缸相应喷油过程同步,各缸喷油均匀性和重复性比较好。
高压燃油泵产生最大的油压为150bar,根据发动机工况需要,通过对油压控制阀的调节,燃油压力可在50bar-150bar之间调节。采用6喷孔喷油器,喷嘴锥角为50°,更有利于汽油与空气的充分混合。
水冷涡轮增压技术
发动机的涡轮增压器和排气管采用了集成式的设计,这样可以一定程度上减少多余零件的体积和重量,使得这套系统相对稳定可靠。
涡轮增压冷却系统,主要由冷却循环泵把冷却液从辅助冷却器中输送至增压空气冷却器和废气涡轮增压器中。主要包括两个循环通道,一个是经过涡轮增压器,对涡轮增压系统进行冷却;另一个是经过进气歧管内的冷却器,对增压空气冷却。
进气歧管翻板
通过控制进气歧管翻板的开闭,可以满足发动机在不同工况下的充气需求。如发动机在低速工况时,通过进气歧管翻板关闭下进气通道,可以减少气流通过的横截面,来增加气流流速,结合活塞顶的特殊设计,有效形成强烈的进气涡流,有利于混合气的形成与雾化。
同样地,当发动机进入高速工况采用均质混合气模式时,进气歧管翻板开启下进气通道,增大气流通过的横截面,以获得更多进气,提高发动机的输出功率。
可变排量机油泵
传统的机油泵工作中,随着发动机转速的增加,机油压力也不断增大,机油的压力主要是通过机油泵内部的限压阀限制,但是这时的机油泵仍然运行在最大输出量,不仅消耗发动机的动力,而且输入的能量转化为热能,加速了机油的老化。
EA888发动机采用可变排量机油泵,主要是通过调节泵齿轮的供油量来实现机油压力的调节。怎样来实现的?主要是通过机油泵内部两个泵齿轮相对移动来实现的。两个泵齿轮无位移(正对着),供油能力最大;两个泵齿轮最大轴向位移(偏移),供油量最小。
双对旋平衡轴
EA888发动机采用了双平衡轴,位于气缸体的下端两侧,由曲轴和链条驱动。利用两根平衡轴自身的旋转产生的离心力正好与曲轴产生的离心力方向相反,可以抵消掉大部分的振动,从而增强发动机动平衡状态特性,降低噪音。
大众EA888发动机同样集合了缸内直喷、水冷涡轮增压、可变气门正时等先进技术,拥有更低的油耗、排放以及更强劲的动力输出,与EA111 1.4TSI发动机相比,EA888发动机采用了双平衡轴、气门滚珠摇臂与发电启动一体机等技术,使发动机运转更为平顺、噪音进一步降低。
出现的问题
虽然优势明显,但油分离器经常失效,导致机油蒸汽油水分离失效[2] ,另外凸轮轴端盖与缸体间因端盖塑料强度不足导致密封不严,致机油泄漏等问题。
7. 发动机器(动作 物品)什么课本,破坏什么
等我翻过教科书... 1,整体断裂2,过度残余变形3,部分表面损伤4,正常工作条件下造成的破坏
8. 发动机器(动作 物品)什么课本
:发动机缺少冷却液会造成温度过高并且继续驾驶一段时间后会拉缸 曲轴断裂 缸体破碎,最终导致发动机报废无维修价值
9. 奇瑞风云2用的是什么发动机器
楼主这个现在旗云2和风云2用的机器一样,都是ACTECO-SQR477F。
10. 什么发动机都可以加取力器吗
取力器一般装在变速器上,跟发动机的关系不是很直接,只要变速器上有接口就可以。
如果一定要在发动机上取力,一定要考虑发动机负载的平衡问题,否则可能导致曲轴和曲轴瓦提前磨损,影响发动机使用寿命。