机器数正81的二进制数是多少
A. 设机器数为8位,写出下列二进制数的原码
(1)10001001
(2)1.1001000
B. 机器数的二进制的位数有固定的限制吗
机器数有两个基本特点:一:数的符号数值化。实用的数据有正数和负数,由于计算机内内部的容硬件只能表示两种物理状态(用0和1表示),因此实用数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。通常这个符号放在二进制数的最高位,称
C. 机器数用最高位的二进制数来表示数的符号
对的,是这样的,最高位为0表示正数,最高位为1表示负数。
D. 什么是机器数
数在计算机中的表示形式统称为机器数。
机器数有两个基本特点,内其一,数的符号数值化。实容用的数据有正数和负数,因为计算机只能表示0、1两种状态,数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。通常这个符号放在二进制数的最高位,称符号位,以0代表符号“+”,以1代表符号“-”,这样正负符号就被数值化了。因为有符号占据一位,数的形式值就不等于真正的数值,带符号位的机器数对应的数值称为机器数的真值。
机器数的另一个特点是二进制的位数受机器设备的限制。机器内部设备一次能表示的二进制位数叫机器的字长,一台机器的字长是固定的。字长8位叫一个字节(Byte),现在机器字长一般都是字节的整数倍,如字长8位、16位、32位、64位
E. 字长为8位,其机器数可表示的最大正整数是多少
255.
最大为,而(11111111)2进制表示:2^7+2^6+....+2^1=2^8-1=255。
机器数是将符号"数字化"的数,是数字在计算机中的二进制表示形式。机器数有2个特点:一是符号数字化,二是其数的大小受机器字长的限制。
机器数有两个基本特点:
1、数的符号数值化。实用的数据有正数和负数,由于计算机内部的硬件只能表示两种物理状态(用0和1表示),因此实用数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。
通常这个符号放在二进制数的最高位,称符号位,以0代表符号“+”,以1代表符号“-”。因为有符号占据一位,数的形式值就不等于真正的数值,带符号位的机器数对应的数值称为机器数的真值。 例如二进制真值数-011011,它的机器数为 1011011。
2、二进制的位数受机器设备的限制。机器内部设备一次能表示的二进制位数叫机器的字长,一台机器的字长是固定的。字长8位叫一个字节(Byte),机器字长一般都是字节的整数倍,如字长8位、16位、32位、64位。
(5)机器数正81的二进制数是多少扩展阅读
机器数的表示方法
1、定点表示法
定点,即小数点固定,固定在有效数位的最前面或最后面。因为位置是固定的,所以可以隐藏。
在最前面则表示纯小数,在最后面则表示纯整数,因此在定点计算机的编程语言中,纯小数对应一种变量类型,纯整数对应一种变量类型。
由于只能表示纯小数或纯整数,在编程时要设置合适的比例因子。
2、浮点表示法
N = M x rE
r是浮点数阶码的底,又叫尾数的基数,通常r=2,但可改变。
r增大,可表示数的范围增大。
r增大,可表示数的个数增大。
r增大,可表示数的精度下降。
r增大,将使运算中移位的次数减少,运算速度提高。
E叫做阶码,纯整数,常用移码或补码表示。
M叫做尾数,纯小数,常用原码或补码表示。
E与M都是带符号的定点数。
参考资料来源:网络-机器数
F. 十进制数81转换为对应的二进制数
81/2=40……1
40/2=20……0
20/2=10……0
10/2=5……0
5/2=2……1
2/2=1……0
1/2=0……1
倒着读回来就是1010001
G. 计算机关于机器数的计算
补码:10001111
原码:11110001=-113
补码第一位为符号位,由于补码是通过原码取反加1后得到,所以把其他4个1放在最后回4位.因为变回原答码后,1越是在高位,数就越小.
我也不知道对不,给你参考.
H. 机器数的原码反码补码
D)补码`
计算机中的存储系统都是用2进制储存的,对我们输入的每一个信息它都会自动转变成二进制的形式,而二进制在存储的时候就会用到原码,反码和补码
例如:输入25
原码就是:0000000000011001
反码: 1111111111100110
补码: 1111111111100111
~
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<<数学发展史>>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.
数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为
(-127~-0 +0~127)共256个.
有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).
于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:
(-128~0~127)共256个.
注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确
所以补码的设计目的是:
⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.
⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计
所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码
I. 机器数以二进制表示出来,不知怎么求真值
就是二进制转化为十进制
01101110
128 64 8 4 2 ,这几个数加起来就行了.
J. 计算机中的机器数
数在计算机中的表示形式统称为机器数。
机器数有两个基本特点,其一,数的符号数值版化。实用的数据权有正数和负数,因为计算机只能表示0、1两种状态,数据的正号“+”或负号“-”,在机器里就用一位二进制的0或1来区别。通常这个符号放在二进制数的最高位,称符号位,以0代表符号“+”,以1代表符号“-”,这样正负符号就被数值化了。因为有符号占据一位,数的形式值就不等于真正的数值,带符号位的机器数对应的数值称为机器数的真值。
机器数的另一个特点是二进制的位数受机器设备的限制。机器内部设备一次能表示的二进制位数叫机器的字长,一台机器的字长是固定的。字长8位叫一个字节(Byte),现在机器字长一般都是字节的整数倍,如字长8位、16位、32位、64位。