磁仪器是什么原理
『壹』 核磁共振的原理是什么
核磁共振用NMR(Nuclear Magnetic Resonance)为代号。
1.原子核的自旋
核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况,见表8-1。
I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。
2.核磁共振现象
原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。
式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值,
当自旋核处于磁场强度为H0的外磁场中时,除自旋外,还会绕H0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。自旋核进动的角速度ω0与外磁场强度H0成正比,比例常数即为磁旋比γ。式中v0是进动频率。
微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是:
m=I,I-1,I-2…-I
原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出:
正向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。
目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。
3.1H的核磁共振 饱和与弛豫
1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。见图8-2。1H的两种取向代表了两种不同的能级,
因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,即符合下式。
核吸收的辐射能大?
式(8-6)说明,要使v射=v0,可以采用两种方法。一种是固定磁场强度H0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与H0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度H0,当H0与v射匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。
在外磁场的作用下,1H倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。1H-NMR的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1H核数目与处于高能态1H核数目相等,与此同步,PMR的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。
1H核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。其速率用1/T2表示,T2称为自旋晶格弛豫时间。自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。其速率用1/T2表示,T2称为自旋-自旋弛豫时间。自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。
『贰』 请问磁性测厚仪的工作原理是什么吖急求~
磁性测厚仪分为两种,一种叫磁力测厚仪,一种叫磁感测厚仪。
磁力测厚仪是通过永久磁铁的测头与导磁基材之间的磁吸力大小与处于两者之间的距离成一定比例关系可测量覆层的厚度。
磁感应原理就是利用测头经过非铁磁覆面而流入铁基材的磁通大小来测定覆层的厚度,覆层俞厚,测通越小,然后经过处理换算得到涂层厚度的。
现在测量工件表面覆层的厚度基本上是用磁感测厚仪了。
希望我的回答对你有帮助
深圳成企鑫专业制造涂层检测仪器
『叁』 核磁共振仪 的工作原理是什么工作过程是怎样的
在磁场下,某些物质(如氢、碳)在高频电场下,产生磁共振现象,使交流电场发回生偏转,比如答:在Y方向加磁场,在X方向加交流电场,一般在Z方向接收不到信号,当发生共振时,Z方向将接收到信号,一般可做含水量分析(氢)
核磁共振成像技术,利用磁场梯度,对人体进行扫描,得到人体氢或碳等的分布图像,经计算机计算后得到断层图像,多用在医学。
『肆』 磁光美容仪器的作用原理
磁光是集表皮冷却技术、多波段强脉冲光治疗技术为一体智能化、非剥脱性的皮专肤重建系统属。磁光将上述技术智能化的组合,针对不同的皮肤类型和患者不同的皮肤问题,给出针对性的治疗方案。在对表皮充分保护的前提下(表皮冷却技术),利用磁光的技术可独特的分解表皮和真皮内的斑点样色素(如:颧部褐青色痣等),使能量最大限度地聚焦到真皮的胶原组织和毛囊的毛乳头部位。应用磁光的选择性光热原理可以强化嫩肤、祛斑和脱毛的效果,在患者无明显痛感和副作用的情况下轻松实现皮肤重建和脱毛.
『伍』 核磁共振仪 的工作原理是什么 工作过程是怎样的
核磁共振主要是由原子核的自旋运动引起的。不同的原子核,自旋运动的情况不同,它们可以用核的自旋量子数I来表示。自旋量子数与原子的质量数和原子序数之间存在一定的关系,大致分为三种情况、核磁共振用NMR(Nuclear Magnetic Resonance)为代号。 I为零的原子核可以看作是一种非自旋的球体,I为1/2的原子核可以看作是一种电荷分布均匀的自旋球体,1H,13C,15N,19F,31P的I均为1/2,它们的原子核皆为电荷分布均匀的自旋球体。I大于1/2的原子核可以看作是一种电荷分布不均匀的自旋椭圆体。 编辑本段核磁共振现象 原子核是带正电荷的粒子,不能自旋的核没有磁矩,能自旋的核有循环的电流,会产生磁场,形成磁矩(μ)。 公式中,P是角动量,γ是磁旋比,它是自旋核的磁矩和角动量之间的比值, 当自旋核处于磁场强度为H0的外磁场中时,除自旋外,还会绕H0运动,这种运动情况与陀螺的运动情况十分相象,称为进动,见图8-1。自旋核进动的角速度ω0与外磁场强度H0成正比,比例常数即为磁旋比γ。式中v0是进动频率。 微观磁矩在外磁场中的取向是量子化的,自旋量子数为I的原子核在外磁场作用下只可能有2I+1个取向,每一个取向都可以用一个自旋磁量子数m来表示,m与I之间的关系是: m=I,I-1,I-2…-I 原子核的每一种取向都代表了核在该磁场中的一种能量状态,其能量可以从下式求出: 正向排列的核能量较低,逆向排列的核能量较高。它们之间的能量差为△E。一个核要从低能态跃迁到高能态,必须吸收△E的能量。让处于外磁场中的自旋核接受一定频率的电磁波辐射,当辐射的能量恰好等于自旋核两种不同取向的能量差时,处于低能态的自旋核吸收电磁辐射能跃迁到高能态。这种现象称为核磁共振,简称NMR。 目前研究得最多的是1H的核磁共振,13C的核磁共振近年也有较大的发展。1H的核磁共振称为质磁共振(Proton Magnetic Resonance),简称PMR,也表示为1H-NMR。13C核磁共振(Carbon-13 Nuclear Magnetic Resonance)简称CMR,也表示为13C-NMR。 编辑本段1H的核磁共振 1H的自旋量子数是I=1/2,所以自旋磁量子数m=±1/2,即氢原子核在外磁场中应有两种取向。见图8-2。1H的两种取向代表了两种不同的能级, 因此1H发生核磁共振的条件是必须使电磁波的辐射频率等于1H的进动频率,即符合下式。 核吸收的辐射能大? 式(8-6)说明,要使v射=v0,可以采用两种方法。一种是固定磁场强度H0,逐渐改变电磁波的辐射频率v射,进行扫描,当v射与H0匹配时,发生核磁共振。另一种方法是固定辐射波的辐射频率v射,然后从低场到高场,逐渐改变磁场强度H0,当H0与v射匹配时,也会发生核磁共振。这种方法称为扫场。一般仪器都采用扫场的方法。 在外磁场的作用下,1H倾向于与外磁场取顺向的排列,所以处于低能态的核数目比处于高能态的核数目多,但由于两个能级之间能差很小,前者比后者只占微弱的优势。1H-NMR的讯号正是依靠这些微弱过剩的低能态核吸收射频电磁波的辐射能跃迁到高能级而产生的。如高能态核无法返回到低能态,那末随着跃迁的不断进行,这种微弱的优势将进一步减弱直至消失,此时处于低能态的1H核数目与处于高能态1H核数目相等,与此同步,PMR的讯号也会逐渐减弱直至最后消失。上述这种现象称为饱和。 1H核可以通过非辐射的方式从高能态转变为低能态,这种过程称为弛豫,因此,在正常测试情况下不会出现饱和现象。弛豫的方式有两种,处于高能态的核通过交替磁场将能量转移给周围的分子,即体系往环境释放能量,本身返回低能态,这个过程称为自旋晶格弛豫。其速率用1/T1表示,T1称为自旋晶格弛豫时间。自旋晶格弛豫降低了磁性核的总体能量,又称为纵向弛豫。两个处在一定距离内,进动频率相同、进动取向不同的核互相作用,交换能量,改变进动方向的过程称为自旋-自旋弛豫。其速率用1/T2表示,T2称为自旋-自旋弛豫时间。自旋-自旋弛豫未降低磁性核的总体能量,又称为横向弛豫。 编辑本段13C的核磁共振 天然丰富的12C的I为零,没有核磁共振信号。13C的I为1/2,有核磁共振信号。通常说的碳谱就是13C核磁共振谱。由于13C与1H的自旋量子数相同,所以13C的核磁共振原理与1H相同。 将数目相等的碳原子和氢原子放在外磁场强度、温度都相同的同一核磁共振仪中测定,碳的核磁共振信号只有氢的1/6000,这说明不同原子核在同一磁场中被检出的灵敏度差别很大。13C的天然丰度只有12C的1.108%。由于被检灵敏度小,丰度又低,因此检测13C比检测1H在技术上有更多的困难。表8-2是几个自旋量子数为1/2的原子核的天然丰度。 编辑本段核磁共振仪 目前使用的核磁共振仪有连续波(CN)及脉冲傅里叶(PFT)变换两种形式。连续波核磁共振仪主要由磁铁、射频发射器、检测器和放大器、记录仪等组成(见图8-5)。磁铁用来产生磁场,主要有三种:永久磁铁,磁场强度14000G,频率60MHz;电磁铁,磁场强度23500G,频率100MHz;超导磁铁,频率可达200MHz以上,最高可达500~600MHz。频率大的仪器,分辨率好、灵敏度高、图谱简单易于分析。磁铁上备有扫描线圈,用它来保证磁铁产生的磁场均匀,并能在一个较窄的范围内连续精确变化。射频发射器用来产生固定频率的电磁辐射波。检测器和放大器用来检测和放大共振信号。记录仪将共振信号绘制成共振图谱。 70年代中期出现了脉冲傅里叶核磁共振仪,它的出现使13C核磁共振的研究得以迅速开展。 编辑本段氢 谱 氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信息,可以推测质子在碳胳上的位置。关于具体过程,就不太清楚了,谢谢
『陆』 核磁共振的原理是什么呢
核磁共振检查是利用施加无线电磁波信号,根据人体对无线电波信号产生版不同反应,再接受权此信号,通过复杂的计算机运算,最后出现可以用于临床诊断的一种检查方法,对人体不会造成影响。在检查时,核磁共振仪器发出电磁波,引起人体组织中原子、质子产生共振,引起共振后撤出电磁波,人体组织也将射出此类电磁波,而后接受电磁波成像,即为核磁共振基本原理。
『柒』 谁知道磁疗产品的作用原理是什么
磁性是物质的属性之一。人体也具有一定的磁性,现已发现人脑 磁疗、心脏、皮肤和其他器官的电流活动都产生有磁场,甚至连头发上的毛囊也产生有磁场。近年来由于现代磁学和生物学的发展,出现了生物磁学这门边缘科学,现已获知磁性物质和磁场对生物学的生理机能都有一定的作用和影响,这种作用和影响叫生物的磁效应。这种磁效应应是由于物体内部微观结构的电子运动和构成生物组织的物质磁性决定的。科学实验已证实,磁性物质和磁场对生物的分子、细胞、神经、器官及整体(指活体)的各个层次均显示出不同的影响。磁疗就是利用人体内部的这种生物磁效应来调整和恢复人体内各种不平衡或不正常的机能状态来达到保健的目的。
根据生物的磁效应,磁疗治病机理可以概括为以下几个方面:
1.生命过程中的氧化还原反应、神经的传导、心肺的搏动等都与人体内部的电子传递有关,磁场可以影响电子的运动。
2.生物膜的渗透性有极强的选择性,它对人体内部的脑电位及物质的交换和代谢有主要的作用。磁场能影响一些带电离子,如钾、钠、氧的渗透能力。
3.人体中的各种酶和蛋白质都含有许多微量过渡金属,如铁、钴、锰、铜等。这些微量元素大多是各种酶和蛋白质的组成部分,同时又是酶和蛋白质的活动中心。磁场通过对过渡金属元素(磁性离子)的作用而改变这些酶和蛋白质的活动功能,加速酶系统的生化反应。
『捌』 磁力测量仪器的基本原理
勘探用的测量仪器早期是弦丝式、刃口式机械式磁力仪、感应式磁力仪等、第二代磁力仪,是应用核磁共振特性,利用高磁导率软磁合金,以及复杂的电子线路组成。直到20世纪80年代提出质子旋进式磁力仪,及磁通门磁力仪等。质子磁力仪对地磁场测量的灵敏度达0.1 nT(CZM-2B型);光泵磁力仪有氦跟踪式和铯自激式光泵磁力仪,历经20年到20世纪90年代仪器测量灵敏度达0.003 nT(HC-90型航空磁力仪),地面磁力仪HC-95灵敏为0.01 nT。
根据需要分别有:航空磁力仪、地面磁力仪、井中磁力仪、海洋磁力仪以及实验室的高灵敏度磁力仪。
磁力仪按其测量的地磁场参数及其量值,可分为相对测量仪器(如悬丝式垂直磁力仪等,它是测量地磁场垂直分量Z的相对差值)和绝对测量仪器(如质子磁力仪等,它是测量地磁场总强度了的绝对值,亦可测量相对值,或梯度值)。
4.4.1.1 磁通门磁力仪
坡莫合金是一种高磁导率,矫顽力很小的软磁合金,在外磁场作用下(磁滞延线窄而陡变)很快达到饱和磁化,所以磁通门又叫饱和磁力仪。即外磁场变化很小,感应磁场强度变化很大,仪器很灵敏。把坡莫合金做成闭合磁路;外绕激励磁线圈和讯号接收绕组输出脉冲电压与外磁场大小成正比。这类磁力仪类型很多,有航空、地面磁力仪和磁化率测量仪等。
4.4.1.2 质子旋进磁力仪
在能产生磁场的螺线管内的容器中充满富含氢的液体(如水),当通电产生磁场后,使受激发的氢原子核(质子)自旋产生磁矩,并按螺线方向平行排列,出现顺磁性宏观磁矩。当垂直于地磁场的螺线管磁场停止后,氢核的宏观磁矩绕地磁场总强度(F)方向做拉莫尔旋进,旋进频率与地磁场(F)关系为
环境地球物理学概论
表明旋进频率f与F成正比。仪器产生激励磁场的线圈也是接收线圈,并调谐为旋进频率f。因此,在一定强度的地磁场中质子旋进的磁矩将在线圈中产生感应电压,即为地磁场强度信号。
4.4.1.3 光泵磁力仪
根据原子获得能量后被激发,由低能级跃迁到高能级的原理。光泵磁力仪利用氦(4He)的原子灯,发射波长1.08μm的光,并制成平行光束与地磁场(被测磁场)方向一致,通过充有4He的吸收室,4He吸收1.08 μm光后形成正离子,并由低能级跃迁到高能级(称光泵作用),这些4He原子磁矩定向平行排列,形成宏观磁场。跃迁磁矩频率f0与地磁场T关系为
环境地球物理学概论
由于式中f0比(4.4.1)中f高很多,有利于提高仪器灵敏度。仪器在吸收室处,垂直光线入射方向加上调制磁场,使射入磁场的频度自动跟踪地磁场变化,实现自动测量。
4.4.1.4 超导磁力仪
1962年约瑟夫逊提出并经实验证实,在两块超导体中间夹着10~30 A的绝缘层,超导电子能无阻地通过,绝缘层两端无电压降,称此绝缘层为超导隧道结(约瑟夫逊结)。这种现象叫做超导隧道结的约瑟夫逊效应。
超导磁力仪就是根据约瑟夫逊效应制成的测量仪,其测量器件是由超导材料制成的闭合环,有一个或两个超导隧道结,结的截住面积很小,只要通过较小的电流(10-1~10-6A),接点处就达到临界电流Ic。(超过Ic超导性被破坏,即超导隧道结所能承受的最大超导电流)。Ic对磁场很敏感,并随外磁场的大小呈周期性起伏变化。其幅值逐渐衰减。临界电流Ic,也是透入超导结的磁能量Φ的周期函数。它利用器件对外磁场的周期性响应,对磁能量变化(与外磁场变化成正比)进行计数,已知环的面积,就可算得磁场值。
超导磁力仪是20世纪60年代中期利用超导技术研制的一种高灵敏磁力仪。其灵敏度比其他磁力仪高几个数量级(可达10-6nT),能测出10-3nT级的磁场。测程范围宽,磁场频率响应高,观测数据稳定可靠。在地磁学中,用于研究地磁场的微扰。在磁大地电流法与电磁法中,用于测量微弱的磁场变化。在岩石物理学中,用于岩石磁学研究。
由于这种仪器的探头需要低温条件,常用装于杜瓦瓶的氦进行冷却,因此使得装备复杂,费用较高,目前主要用于实验室。但是,随着超导技术研究的不断进展,相信在不久的将来,在环境地球物理学中应用会多起来。