当前位置:首页 » 数控仪器 » 离子束诱变需要什么仪器

离子束诱变需要什么仪器

发布时间: 2021-02-13 02:34:15

⑴ ARTP诱变系统的ARTP诱变育种的优势

与常规的来菌株改造手段相比,ARTP具有自很多独特的优点:
1、ARTP具有成本低、操作方便等优点。由于没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备,ARTP的构造非常精巧,易于运输,且操作简便。
2、和传统的诱变方法相比,ARTP对遗传物质的损伤机制多样,因而获得突变型的多样性的可能性增大,这使得ARTP在应对代谢网络复杂的微生物的诱变育种时,显示出独特的优势。
3、ARTP对环境无污染,保证操作者的人身安全。无论用何种气体放电,其均无有害气体产生;另外,无论用何种气体放电,其放电过程中没有核的聚变和裂变等反应,存在的仅是从几十纳米波长,到紫外线,到可见光甚至更强的光线产生。这种长波的光线与辐射射线不同,其对身体损伤较小。

⑵ 人工诱变手段有哪两大类

物理诱变有电离辐射紫外光照射等,近年还发展了离子束注入诱变以及用航天器搭载材料,接受太空辐射和微重力诱导的空间诱变育种(spacemutationbreeding)化学诱变使用各种化学诱变剂,例如用甲基磺酸乙酯(EMS)磺酸二乙酯(DES)等电离辐射易引起染色体畸变,而化学诱变剂多引起点突变当前应用最广泛的是60Co-γ射线诱变,其他手段如热中子和快中子辐照激光处理以及化学诱变剂等也有应用应根据诱变目标设备条件和植物材料种类来选用诱变方法诱变剂量依植物材料和病害的种类不同,为了防止产生多种不需要的变异,给筛选和育种造成困难,诱变处理应采用中等剂量或低剂量抗病突变率较低,处理当代(M1)的个体数要多一些

诱变处理的材料,大部分的变异分离发生在M2代,可从M2代开始筛选据测定,M2代抗病突变体出现的频率很低,大致为10-5~10-4或更低,因此M2代应有足够大的群体有时,诱变处理的M1代发生隐性突变或微突变,M2代尚未修正和复原,往往需由M3代开始接种鉴定和选择

按照植物材料和病害种类不同,可在室内或田间病圃接种条件下进行抗病性鉴选抗病突变体筛选还可结合采用多种快速离体鉴选方法例如,黑龙江省农业科学院作物育种研究所用辐射诱变与毒素筛选相结合的方法,选育抗根腐病的春小麦新种质(孙光祖等,1998)早籼浙9248水稻经卫星搭载诱变处理,当代植株的性状均没有明显的变化,SP2代(M2代)的农艺性状和抗病性出现了较大的分离,在病区经多代筛选,育成了突变体浙101,高抗稻瘟病,兼抗白叶枯病(严文潮等,2004)

筛选到的抗病突变体,少数综合性状优异而抗病性有显著提高的,可以直接用于生产,大部分突变体用作抗源,进行常规杂交育种

⑶ 诱变育种常用的方法有

诱变育种:是用物理或化学的诱变剂使诱变对象内的遗传物质(DNA)的分子结构发生改变, 引起性状变异并通过筛选获得符合要求的变异菌株的一种育种方法。

物理方法:射线(紫外线、X光线、Y射线,中子线),激光微束,离子束,微波,超声波,热力等
化学诱变常用方法:浸渍法、涂抹法、滴液法、注射法、施入法和熏蒸法。化学诱变剂(碱基类似物、烷化剂,移码诱变剂,硫酸二乙酯(DFS)、5-溴尿嘧 啶(5-BU)、氮芥(Nm)、N'广甲基N'亚硝基胍(NTG))。

生物方法:空间条件处理诱变,病原微生物诱变,转基因诱变

秋水仙素是从百合科植物秋水仙(Colchicum autumnale)的根、茎、种子等器官中提炼出来的一种药剂,分子式为C22H25O6N。积水仙素是淡黄色粉末,纯品是针状无色结晶性,性极毒,融点为155℃,易溶于水、酒料、氯仿和甲醛中,不易溶解于乙醚、苯。
秋水仙素能抑制细胞分裂时纺锤丝的形成,使已正常分离的染色体不能拉向两极,同时秋水仙素又抑制细胞板的形成,使细胞有丝分裂停顿在分裂中期。由于它并不影响染色体的复制,因而造成加倍后的染色体仍处于一个细胞中,导致形成多倍体。处理过后,如用清水洗净秋水仙素的残液,细胞分裂仍可恢复正常。
人工诱导多倍体常用秋水仙素的水溶液。配制方法为,将秋水仙素直接溶于冷水中,或先将其溶于少量酒精中,再加冷水。配制好的溶液应放入棕色玻璃瓶内保存,且保存时应置于暗处,避免阳光直射,此外瓶盖应拧紧,以减少与空气的接触,避免造成药效损失。
3.秋水仙素的浓度与处理时间
秋水仙素溶液的浓度及处理时间的长短是诱导多倍体成功的关键因素。一般秋水仙素处理的有效浓度有0.0006%~1.6%,比较适宜的浓度为0.2%~0.4%。处理时间长短与所用秋水仙素的浓度有密切关系,一般浓度俞大,处理时间则要愈短,相反则可适当延长。多数实验表明,浓度大,处理时间短的效果比浓度小,处理时间长要好。但处理时间一般不应小于24小时或以处理细胞分裂的1~2个周期为原则。
由于不同植物,不同器官或组织在一定条件下对秋水仙素的反应不同,因此,须根据不同情况来掌握处理的浓度和时间。例如,东北林业大学张敩方等人用白花类型金鱼草种子进行多倍体诱变,采用浓度0.3%~0.5%的秋水仙素处理24小时诱变效果较好。另有实验表明,处理矮牵牛种子的适宜浓度为0.01%~0.1%,以0.05%处理时间24小时效果最佳。在不同器官方面,处理种子的浓度可稍高些,持续时间可稍长(一般为24~48小时);处理幼苗时,浓度应低些,处理时间可稍短点;植物幼根对秋水仙素比较敏感,极易受损害,因此,对根处理时应采用秋水仙素溶液与清水交替间歇的方法较好。
秋水仙素溶液只是影响正在分裂的细胞,对于处于其他状态的细胞不起作用。因此,对植物材料处理的适宜时期是种子(干种子或萌动种子)、幼苗、幼根与茎的生长点、球茎与球根的萌动芽等。如果处理材料的发育阶段较晚,被诱导的植株易出现嵌合体。

4.秋水仙素处理的方法
(1)浸渍法
此法适合于处理种子,枝条盆栽小苗的茎段生长点。
一般,选干种子或萌动种子,将它们放于培养器内,再倒入一定浓度的秋水仙素溶液,溶液量为淹没种子的2/3为宜。处理时间多为24小时,浓度0.2%~1.6%。浸渍时间不能太长,一般不超过6天,以免影响根的生长。最好是在发根以前处理完毕。处理完后应及时用清水洗净残液,再将种子播种或沙培。对于百合类植物,常采二倍体鳞片浸于0.05%~0.1%的秋水仙素溶液,处理1~3小时后洗净扦插。唐菖蒲实生小球也可用浸渍法促使染色体加倍。
盆栽幼苗,处理时将盆倒置,使幼苗顶端生长点浸入秋水仙素溶液内,以生长点全部浸没为度。对于组织培养试管苗也可采用浸渍法处理,只是处理时须用纱布或湿滤纸覆盖根部,处理时间因材料可从几个小到几天。对插条,一般处理1~2天。
(2)滴定法
用滴管将秋水仙素水溶液滴在子叶、幼苗的生长点上(即顶芽或侧芽部位)。一般6~8小时滴一次,若气候干燥,蒸发快,中间可加滴溜馏水一次,如此反复处理一至数日,使溶液透过表皮渗入组织内起作用。若水滴难以停留在芽处,则可用棉球包裹幼芽,再滴芽液处理。此法与浸种法相比,可避免植株根系受到伤害,也比较节省药液。
(3)毛细管法
将植株的顶芽、腋芽用脱脂棉或纱布包裹后,将脱脂棉与纱布的另一端浸在盛有秋水仙素溶液的小瓶中,小瓶置于植株近旁,利用毛细管吸水作用逐渐把芽浸透,此法一般多用于大植株上芽的处理。
(4)涂抹法
将秋水仙素乳剂涂抹在牙上或梢端,隔一段时间再将乳剂洗去。
(5)套罩法
保留新梢顶芽,除去牙下数叶,套上一个胶囊。内盛0.65%的琼脂加适量秋水仙素,经24小时即可除去胶囊。
(6)注射法
采用微量注射器将一定浓度的秋水仙素溶液注入植株顶芽或侧芽中。
(7)复合处理法
据日本山川邦夫(1973年)报道,将好望角苣苔属(Streptocarpus,属苦苣苔科植物)中的一些种用秋水仙素处理11天,又用 0.04~0.05Gy(4~5rad)的X射线照射,可提高染色体加倍植株的出现率达到60%。而单独用秋水仙素处理时为30%。采用复合处理法还获得了两株八倍体。

5.秋水仙素诱导多倍体需注意的事项
(1)幼苗生长点的处理愈早愈好,获得全株四倍性细胞的数目就愈多,处理时间愈晚,则大多是混杂的嵌合体。
(2)植物组织经秋水仙素处理后,在生长上会受到一定影响,如果外界条件对它生长不适宜,也会使试验失败,要注意培育、管理。对形成嵌合体的可采用摘顶、分离繁殖、细胞培养等方法。
(3)处理期间,注意处理时的室温,当温度较高时,处理浓度应低一些,处理时间要短些;相反,当室温较低时,处理浓度应高些,处理时间应长点。
(4)诱导多倍体时,处理的植物材料应选二倍体类型,且生长发育处理幼苗期,材料数量上应尽量多数,以便选择有利变异。
(5)处理完后,须用清水冲洗干净,以避免残留药液继续使染色体加倍,从而对植株造成伤害。
(6)秋水仙素属剧毒物质,配制和使用时,一定要注意安全,避免秋水仙素粉末在空中飞扬,以免误入呼吸道内;也不可触及皮肤。可先配成较高浓度溶液,保存于棕色瓶中,盖紧盖子,放于黑暗处,用时再稀释。

⑷ 跪求一篇离子束诱变有关的英文文献,微生物方向,小弟急用!!!

1、Microbiological
Implications
of
Periurban
Agriculture
and
Water
Reuse
in
Mexico
City
Plos
One
影响因子:4.351
网页地址:
pdf格式:;jsessionid=.ambra01?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0002305&representation=PDF
更多的呢可以到OA图书馆进行查询。专
或者到属哪里提问和问我。
2011-11-12
1:04:35

⑸ 诱变的物理诱变

物理诱变剂主要有紫外线,X—射线,γ-射线,快中子,激光,微波,离子束等。 常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,(缩写为ARTP)能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。按照热力学平衡状态,等离子体可分为三种:完全热力学平衡等离子体(也称高温等离子体,其电子温度(Te)、离子温度(Ti)和中性粒子温度(Tn)完全一致),局部热力学平衡等离子体(也称热等离子体,Te≈Ti≈Tn=3×10~3×10),以及非热力学平衡等离子体(也称冷等离子体,其Te≥Ti,Ti≈Tn)。
大气压辉光放电(Atmospheric Pressure Glow Discharge,APGD)是一个被广泛使用的、用来描述大气压条件下各种气体放电冷等离子体的总称。在各种大气压非平衡放电等离子体源中,采用裸露金属电极结构的大气压射频辉光放电(Radio Frequency Atmospheric Pressure Glow Discharge,RF APGD)等离子体源是近几年提出的一种新的大气压辉光放电冷等离子体源。为了从生物技术应用的角度突出这种等离子体源的特点,采用常压室温等离子体即ARTP来代表这种RF APGD等离子体源。
科学研究表明,等离子体中的活性粒子作用于微生物,能够使微生物细胞壁/ 膜的结构及通透性改变,并引起基因损伤,进而使微生物基因序列及其代谢网络显著变化,最终导致微生物产生突变。与传统诱变方法相比,采用ARTP能够有效造成DNA多样性的损伤,突变率高,并易获得遗传稳定性良好的突变株;
ARTP是常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。

⑹ 诱变剂的化学诱变剂

常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。按照热力学平衡状态,等离子体可分为三种:完全热力学平衡等离子体(也称高温等离子体,其电子温度(Te)、离子温度(Ti)和中性粒子温度(Tn)完全一致),局部热力学平衡等离子体(也称热等离子体,Te≈Ti≈Tn=3×10~3×10),以及非热力学平衡等离子体(也称冷等离子体,其Te≥Ti,Ti≈Tn)。
大气压辉光放电(Atmospheric Pressure Glow Discharge,APGD)是一个被广泛使用的、用来描述大气压条件下各种气体放电冷等离子体的总称。在各种大气压非平衡放电等离子体源中,采用裸露金属电极结构的大气压射频辉光放电(Radio Frequency Atmospheric Pressure Glow Discharge,RF APGD)等离子体源是近几年提出的一种新的大气压辉光放电冷等离子体源。为了从生物技术应用的角度突出这种等离子体源的特点,采用常压室温等离子体即ARTP来代表这种RF APGD等离子体源。
科学研究表明,等离子体中的活性粒子作用于微生物,能够使微生物细胞壁/ 膜的结构及通透性改变,并引起基因损伤,进而使微生物基因序列及其代谢网络显著变化,最终导致微生物产生突变。与传统诱变方法相比,采用ARTP能够有效造成DNA多样性的损伤,突变率高,并易获得遗传稳定性良好的突变株; 离子注入是20世纪80年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术。离子注入诱变是利用离子注入设备产生高能离子束(40~60keV)并注入生物体引起遗传物质的永久改变,然后从变异菌株中选育优良菌株的方法。离子束对生物体有能量沉积(即注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程)和质量沉积(即注入的离子与生物大分子形成新的分子)双重作用,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。因此,离子注入诱变可得到较高的突变率,且突变谱广,死亡率低,正突变率高,性状稳定。

⑺ 微生物育种的诱变育种

1.1物理诱变
1.1.1紫外照射
紫外线照射是常用的物理诱变方法之一,是诱发微生物突变的一种非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外辐射是最有效的致死剂。紫外辐射的作用已有多种解释,但比较确定的作用是使DNA 分子形成嘧啶二聚体[1]。二聚体的形成会阻碍碱基间正常配对,所以可能导致突变甚至死亡[2]。
紫外照射诱变操作简单,经济实惠,一般实验室条件都可以达到,且出现正突变的几率较高,酵母菌株的诱变大多采用这种方法。
1.1.2电离辐射
γ- 射线是电离生物学上应用最广泛的电离射线之一,具有很高的能量,能产生电离作用,可直接或间接地改变DNA 结构。其直接效应是可以氧化脱氧核糖的碱基,或者脱氧核糖的化学键和糖- 磷酸相连接的化学键。其间接效应是能使水或有机分子产生自由基,这些自由基可以与细胞中的溶质分子发生化学变化,导致DNA 分缺失和损伤[2]。
除γ- 射线外的电离辐射还有X- 射线、β- 射线和快中子等。电离辐射有一定的局限性,操作要求较高,且有一定的危险性,通常用于不能使用其他诱变剂的诱变育种过程。
1.1.3离子注入
离子注入是20 世纪80 年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986 年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术[3]。
离子注入时,生物分子吸收能量,并且引起复杂的物理和化学上的变化,这些变化的中间体是各类活性自由基。这些自由基,可以引起其它正常生物分子的损伤,可使细胞中的染色体突变,DNA 链断裂,也可使质粒DNA 造成断裂。由于离子注入射程具有可控性,随着微束技术和精确定位技术的发展,定位诱变将成为可能[4]。
离子注入法进行微生物诱变育种,一般实验室条件难以达到,目前应用相对较少。
1.1.4 激光
激光是一种光量子流,又称光微粒。激光辐射可以通过产生光、热、压力和电磁场效应的综合应用,直接或间接地影响有机体,引起细胞染色体畸变效应、酶的激活或钝化,以及细胞分裂和细胞代谢活动的改变。光量子对细胞内含物中的任何物质一旦发生作用,都可能导致生物有机体在细胞学和遗传学特性上发生变异。不同种类的激光辐射生物有机体,所表现出的细胞学和遗传学变化也不同[5]。
激光作为一种育种方法,具有操作简单、使用安全等优点,近年来应用于微生物育种中取得不少进展。
1.1.5 微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升。从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应[6]。
因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果。
1.1.6 航天育种
航天育种,也称空间诱变育种,是利用高空气球、返回式卫星、飞船等航天器将作物种子、组织、器官或生命个体搭载到宇宙空间,利用宇宙空间特殊的环境使生物基因产生变异,再返回地面进行选育,培育新品种、新材料的作物育种新技术。空间环境因素主要有微重力,空间辐射,以及其它诱变因素如交变磁场,超真空环境等,这些因素交互作用导致生物系统遗传物的损伤,使生物发生诸如突变、染色体畸变、细胞失活、发育异常等。
航天育种较其它育种方法特殊,是航天技术与微生物育种技术的有机结合,技术含量高,成本高,个体研究者或一般研究单位都难以实现,只能与航天技术相结合,由国家来完成。
1.1.7 常压室温等离子体诱变育种
常压低温等离子体(Atmospheric and Room Temperature Plasma)简称为ARTP,指能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。ARTP技术作为一种新型的物理方法,在微生物诱变育种领域有着广阔的应用前景。
等离子体中适当剂量的活性粒子作用于微生物,能够使微生物细胞壁/膜的结构及通透性改变,并引起基因损伤,菌株出现遗传物质损伤后,微生物启动SOS修复机制,其诱导产生DNA聚合酶Ⅳ和V,它们不具有3ˊ核酸外切酶校正功能,于是在DNA链的损伤部位即使出现不配对碱基,复制仍能继续前进。在此情况下允许错配可增加存活的机会。ARTP对遗传物质造成的损伤,多样性较高;又SOS诱导修复本身为容错性修复,因此,ARTP多样性的损伤将可能在修复过程中包容于DNA链中,在微生物进行复制修复时,其可能带来多样性的错配可能。
ARTP应用于微生物突变育种,成本低、操作方便,没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备;ARTP对遗传物质的损伤机制多样,具有较高的正突变率,突变性能多样,对于真菌、细菌、藻类等都有效果;ARTP对环境无污染,保证操作者的人身安全,无论用何种气体放电,其均无有害气体产生。

⑻ artp给细胞基因组造成哪些损伤

名词解释
编辑
ARTP是常压室温等离子体(Atmospheric and Room Temperature Plasma)的简称,能够在大气压下产生温度在25-40 °C之间的、具有高活性粒子(包括处于激发态的氦原子、氧原子、氮原子、OH自由基等)浓度的等离子体射流。为了从生物技术应用的角度突出这种等离子体源的特点,采用常压室温等离子体即ARTP来代表这种RF APGD等离子体源。

ARTP的生物领域应用
编辑

ARTP在生物领域的应用有如下优点:

1、ARTP本身的温度低、活性粒子浓度高且种类多样;

2、ARTP放电形式多样,可以针对需求制成各种不同形式的处理装置,如可以使用管状的放电区,深入组织内部,或者制成表面的处理装置;

3、ARTP设备简单、操作简易、运行成本低廉;

4、ARTP本身对环境无污染和危害。

由于ARTP上述特性,最近几年其在微生物诱变育种及生物医学领域中已经引起人们越来越多的注意,已经成为当前一个相当活跃的交叉学科研究领域。此外,研究发现等离子体可以在与生物组织或者细胞之间发生复杂而可控的生化过程,如催化、诊断、激发反应等。等离子体的化学特性也可以通过处理材料表面,改变材料特性而应用于生物医学领域。等离子体表面处理因其优良的性能,如高纯性、无菌性以及表面的多样性等,得到越来越广泛的应用。

ARTP微生物突变育种技术
编辑

科学研究表明,等离子体中的活性粒子作用于微生物,能够使微生物细胞壁/

膜的结构及通透性改变,并引起基因损伤,进而使微生物基因序列及其代谢网络显著变化,最终导致微生物产生突变。与传统诱变方法相比,采用ARTP能够有效造成DNA多样性的损伤,突变率高,并易获得遗传稳定性良好的突变株;与分子操作手段相比,ARTP进行微生物诱变育种具有操作简便、成本低、无有毒有害物质参与诱变过程等优点。思清源生物科技有限公司联合清华大学化工系和工物系依据此原理,结合工程学原理,共同开发了ARTP诱变系统,制造了一种简单易用、安全高效的微生物诱变育种机。

诱变机理
编辑

采用氦气为工作气体的常压室温等离子体源中含有多种化学活性粒子成分,如OH、氮分子二正系统、氮分子一负系统、激发态氦原子、氢原子和氧原子等。ARTP富含的活性能量粒子对菌株/植株/细胞等的遗传物质造成损伤,并诱发生物细胞启动SOS修复机制。SOS修复过程为一种高容错率修复,因此修复过程中会产生种类丰富的错配位点,并最终稳定遗传进而形成突变株。SOS修复强度,和DNA受损伤的程度有很大关联。由umu-test方法可知,ARTP对生物的遗传物质损伤效果明显、损伤机制丰富、尤其是对于染色体等真核生物的遗传物质均有很强的损伤效果;因而ARTP较其他诱变方法显示出更高效的突变性能、更广谱的适用范围。经基因组测序得知,经ARTP诱变处理获得的突变株,具有更丰富的基因突变位点。

ARTP诱变育种的优势
编辑

与常规的菌株改造手段相比,ARTP具有很多独特的优点:

1、ARTP具有成本低、操作方便等优点。由于没有很多物理诱变设备(如离子束注入等)所需的离子或电子加速、真空和制冷等附属设备,ARTP的构造非常精巧,易于运输,且操作简便。

2、和传统的诱变方法相比,ARTP对遗传物质的损伤机制多样,因而获得突变型的多样性的可能性增大,这使得ARTP在应对代谢网络复杂的微生物的诱变育种时,显示出独特的优势。

3、ARTP对环境无污染,保证操作者的人身安全。无论用何种气体放电,其均无有害气体产生;另外,无论用何种气体放电,其放电过程中没有核的聚变和裂变等反应,存在的仅是从几十纳米波长,到紫外线,到可见光甚至更强的光线产生。这种长波的光线与辐射射线不同,其对身体损伤较小。[1]

⑼ 什么是物理诱变

用物理因子使基因发生突变的过程。
物理诱变剂主要有紫外线,X—射线,γ-射线,快中子,激光,微波,离子束等。
1紫外线
我们知道,DNA和RNA的嘌呤和嘧啶有很强的紫外光吸收能力,最大的吸收峰在260nm,因此波长260nm的紫外辐射是最有效的诱变剂.对于紫外线的作用已有多种解释,但研究的比较清楚的一个作用是使DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失等[1]。
2γ-射线
γ-射线属于电离辐射,是电磁波.一般具有很高的能量,能产生电离作用,因而能直接或间接地改变DNA结构.其直接效应是,脱氧核糖的碱基发生氧化,或脱氧核糖的化学键和糖-磷酸相连接的化学键断裂,使得DNA的单链或双链键断裂.其间接效应是电离辐射使水或有机分子产生自由基,这些自由基与细胞中的溶质分子起作用,发生化学变化,作用于DNA分子而引起缺失和损伤.此外,电离辐射还能引起染色体畸变,发生染色体断裂,形成染色体结构的缺失、易位和倒位等[2].
3激光
激光在微生物诱变育种方面的研究与开发应用比较晚。激光诱变育种技术研究始于20世纪60年代,经过世界各国40多年的开发应用研究,不仅证明激光和普通光在本质上都是电磁波,它们发光的微观机制都与组成发光物质的原子、分子能量状态和变化密切相关。激光是一种与自然光不同的辐射光,它具有能量高度集中、颜色单一、方向性好、定向性强等特性。激光通过光效应、热效应和电磁效应的综合作用,能使生物的染色体断裂或形成片断,甚至易位和基因重组[3]。
4微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升,从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应。因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果[4]。
5离子束
离子注入是20世纪80年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术。离子注入诱变是利用离子注入设备产生高能离子束(40~60keV)并注入生物体引起遗传物质的永久改变,然后从变异菌株中选育优良菌株的方法。离子束对生物体有能量沉积(即注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程)和质量沉积(即注入的离子与生物大分子形成新的分子)双重作用,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。因此,离子注入诱变可得到较高的突变率,且突变谱广,死亡率低,正突变率高,性状稳定[5]。

⑽ 常用的物理诱变因子有哪些

物理诱变
物理诱变剂主要有紫外线,X—射线,γ-射线,快中子,激光,微波,离子束等。
1紫外线
我们知道,DNA和RNA的嘌呤和嘧啶有很强的紫外光吸收能力,最大的吸收峰在260nm,因此波长260nm的紫外辐射是最有效的诱变剂.对于紫外线的作用已有多种解释,但研究的比较清楚的一个作用是使DNA分子形成嘧啶二聚体,即两个相邻的嘧啶共价连接,二聚体出现会减弱双键间氢键的作用,并引起双链结构扭曲变形,阻碍碱基间的正常配对,从而有可能引起突变或死亡.另外二聚体的形成,会妨碍双链的解开,因而影响DNA的复制和转录.总之紫外辐射可以引起碱基转换、颠换、移码突变或缺失等[1]。
2γ-射线
γ-射线属于电离辐射,是电磁波.一般具有很高的能量,能产生电离作用,因而能直接或间接地改变DNA结构.其直接效应是,脱氧核糖的碱基发生氧化,或脱氧核糖的化学键和糖-磷酸相连接的化学键断裂,使得DNA的单链或双链键断裂.其间接效应是电离辐射使水或有机分子产生自由基,这些自由基与细胞中的溶质分子起作用,发生化学变化,作用于DNA分子而引起缺失和损伤.此外,电离辐射还能引起染色体畸变,发生染色体断裂,形成染色体结构的缺失、易位和倒位等[2].
3激光
激光在微生物诱变育种方面的研究与开发应用比较晚。激光诱变育种技术研究始于20世纪60年代,经过世界各国40多年的开发应用研究,不仅证明激光和普通光在本质上都是电磁波,它们发光的微观机制都与组成发光物质的原子、分子能量状态和变化密切相关。激光是一种与自然光不同的辐射光,它具有能量高度集中、颜色单一、方向性好、定向性强等特性。激光通过光效应、热效应和电磁效应的综合作用,能使生物的染色体断裂或形成片断,甚至易位和基因重组[3]。
4微波
微波辐射属于一种低能电磁辐射,具有较强生物效应的频率范围在300MHz~300GHz,对生物体具有热效应和非热效应。其热效应是指它能引起生物体局部温度上升,从而引起生理生化反应;非热效应指在微波作用下,生物体会产生非温度关联的各种生理生化反应。在这两种效应的综合作用下,生物体会产生一系列突变效应。因而,微波也被用于多个领域的诱变育种,如农作物育种、禽兽育种和工业微生物育种,并取得了一定成果[4]。
5离子束
离子注入是20世纪80年代初兴起的一项高新技术,主要用于金属材料表面的改性。1986年以来逐渐用于农作物育种,近年来在微生物育种中逐渐引入该技术。离子注入诱变是利用离子注入设备产生高能离子束(40~60keV)并注入生物体引起遗传物质的永久改变,然后从变异菌株中选育优良菌株的方法。离子束对生物体有能量沉积(即注入的离子与生物体大分子发生一系列碰撞并逐步失去能量,而生物大分子逐步获得能量进而发生键断裂、原子被击出位、生物大分子留下断键或缺陷的过程)和质量沉积(即注入的离子与生物大分子形成新的分子)双重作用,从而使生物体产生死亡、自由基间接损伤、染色体重复、易位、倒位或使DNA分子断裂、碱基缺失等多种生物学效应。因此,离子注入诱变可得到较高的突变率,且突变谱广,死亡率低,正突变率高,性状稳定[5]。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506