lctofms是什么仪器
1. LC-MS是什么东西啊
hplc:
高效液相色谱
lc-ms:液相色谱
质谱联用
lc-ms-ms:液相二级质谱,是将经过第一次质谱检专测的离子以某种属方式碎裂后再进行质谱检测。
色谱方面建议你去“色谱世界”网站看看,这个网站非常专业,对你会有较大帮助的。
2. LC-MS法 是什么
高效液相色谱是一种准确度高,分离范围广的快速分离方法,它对化合物的结构破坏性小,适合有机分子和生物分子的分离。质谱具有其他分析方法无可比拟的灵敏度,对于未知化合物的结构分析定性十分准确,对相应的标准样品要求也比较低。质谱可以和气相联用如GC/MS,也可以和高效液相色谱联用如HPLC/MS。由于色谱和质谱灵敏度相当,再加上分离效果很好的色谱可以作为质谱的进样系统,质谱作为色谱的鉴定仪速度快,分离好,应用广。色谱-质谱联用成为最好的用于分析微量有机混合物的仪器。
在1970年后,质谱-质谱法(mass separetion-mass spectra Characterization)迅猛发展起来。这种方法让母离子进一步裂解,从而获得裂解过程和分子结构的信息,通常我们称为串联质谱,二维质谱法,序贯质谱等。
我们知道,质谱的分析建立在物质离子化的基础上,按照荷质比分离离子,通过测量离子谱峰的强度实现分析目的。通过色谱纯化后的样品气化离子化形成的离子在电场和磁场的综合作用下,按照质量数和电荷数的比值大小依次排列成谱被记录下来。常见的质谱图的纵坐标是离子信号强度,横坐标就是离子核质比。在液相色谱质谱中通常所用的离子源有ESI和APCI,我们常用的是ESI。ESI 是比APCI软电离程度较小的电离方式,应用范围较APCI 的大,只有少部分有机分子ESI 做不出,可以用APCI 辅助解决问题。 一般用ESI 和 APCI 搭配使用比 ESI 和APCI 的应用范围更广一些。
ESI 和APCI通常产生(M+H)+或(M-H)-等准分子离子,源参数调整简单,容易使用,仪器灵敏度高。对APCI源来说,不足就是给出的结构信息有限,样品易发生热裂解,低质量时基线噪声大。ESI通常只产生分子离子峰,可以直接测定混合物,并可以测定热不稳定的极性化合物。其易形成多电荷离子的特性可分析蛋白质和DNA 等生物大分子;通过调节离子源电压控制离子的碎裂(源内CID)得到化合物的部分结构。
当然有机质谱也有自身局限性。有机分子多数有异构体,而质谱在立体化学方面区分能力差;色谱的重复性稍微差一些,需要严格控制操作条件,不能像NMR,IR等可以直接动手操作,需要专人负责;质谱有离子源的记忆效应,操作起来也很复杂;尽管如此,色谱-质谱联用在天然产物的分析〔1〕,药物代谢结合物(如苯丙酮尿症PKU)的测定〔2〕,药物合成的监测(如Ractopamine)〔3〕具有重要的应用。美国耶鲁大学教授J.Fenn等1984年首次发表ESI-MS的研究成果,并于1988年成功地进行了蛋白质的分析。
先天性疾病中有很大一部分是先天性遗传代谢疾病,就目前医学发展已经了解的有一百多种。这些疾病虽不致死,但是对患儿的智力和体格可能造成痴呆、残缺和畸形,是家庭、社会、国家的沉重负担。目前有30多种代谢失常遗传性疾病如各种氨基酸代谢失常血症包括同构胱氨酸尿症、瓜氨酸血症、酪氨酸血症、超苯丙氨酸血症、精氨酸酶缺乏症、精氨琥珀酸尿症和各种超甲硫氨酸血症、短链和长链酰基辅酶A脱氢酶缺乏症(SCAD和LCAD)、异戊酸血症、丙酸血症、甲基丙二酸血症、戊二酸血症和其它各种有机酸代谢失常疾病等都可用LC/MS/MS进行临床检测〔4〕。
我们知道,保证药品质量的一个重要方面是杂质检查及限度控制,使用LC/MS/MS可以很方便的对药品进行监控。Nicolas建立了不同批次抗癌药物DuP941的LC/MS/MS谱图达到质量控制目的;Rourick建立了鉴定药品杂质的方法,利用LC/MS/MS功能鉴定头孢羟氨苄降解产物的结构。对分析化学家来说是一个挑战的体内药物分析利用LC/MS/MS也显示很大的优越性。有报道Takeshi对血液和尿液中11个添加的吩噻嗪类药物进行分析,采用SPME和LC分离经MS/MS检测。Wong开展了微透析-LC/MS/MS生物活体分析,将微透析探针插入动物的颈动脉,实时了解松果体素在体内的生化过程和代谢情况。LC/MS/MS还可以鉴别体液中很多药物,这在很多文献中都有报道〔5,6〕。
LC/MS/MS也用于生物技术中分子量的测定〔7〕。对分子量10000以上的蛋白质用离子喷雾技术进行精确的质量测定是常规的分析。有研究用离子喷雾测定甲硫酸氨基-人体生长激素(MET-HGH)的分子量为22,256.32±0.44Dr,与实际计算分子量22,256.2Dr相差很小。同聚丙烯酰胺凝胶电泳、蔗糖密度离心法等经典的蛋白质分子量测定技术相比,分析时间短,样品消耗少,测定快捷准确。还有研究者利用LC/MS/MS开展DNA-药物结合态的分析,蛋白质与金属离子配位研究〔8〕。
司法鉴定中LC/MS/MS也是毒品检测的一个有力工具〔9〕。Soenoff建立了新生婴儿血液中苯甲酰爱康宁的确证方法,这就可以对可疑吸毒者出生的婴儿进行鉴定。Clauwean用LC/MS/MS和LC/荧光检测了头发中可卡因及其代谢物,得到的结果是一致的,并且在很低的浓度时仍可以进行MS/MS全扫描。Wang对可卡因和它的15个代谢物的裂解机理在改变CID源和标准品的条件下进行了深刻探讨,取得很大的成就。
LC/MS/MS在食品检测中的地位更是不可低估。例如蜂蜜中氯霉素的LC/MS/MS 分析,鱼肉中孔雀石绿的LC/MS/MS 分析,LC/MS/MS同时分析多种抗生素,动物组织中19种β肾上腺素兴奋剂的检测,苏丹红的LC-MS/MS方法的测定,水果和蔬菜中100种农药及其代谢物的同时检测,干炸食品中丙烯酰胺的测定。硝基呋喃是国际动物源性食品贸易的必检项目,硝基呋喃类药物主要包括呋喃唑酮、呋喃它酮、呋喃西林和呋喃妥因,用于治疗和预防由埃希氏菌和沙门氏菌引起的哺乳动物消化道疾病。研究发现,呋喃西林、呋喃唑酮及其代谢物具有致癌作用〔10〕。
1995年欧盟禁止在食用动物中使用硝基呋喃类药物, 2002年我国颁布了禁止使用该类兽药的禁令〔11〕。虽然硝基呋喃类药物代谢快而且对光敏感,母体化合物在动物体及产品中很快就降至检出限以下,但其代谢物以蛋白结合物的形式在体内可残留较长时间〔12,13〕。
目前,各国均将硝基呋喃代谢物作为指示硝基呋喃类药物残留的标示物。彭涛用高效液相色谱/串联质谱(LC/MS/MS)法同时测定奶粉中呋喃唑酮、呋喃它酮、呋喃西林和呋喃妥因的代谢物。各界对此都进行了积极的研究〔14,15〕。
随着科技发展,分析领域对仪器的要求的不断提高,制药行业对0.1%含量的杂质要求定性和定量,在增加检测的选择性和灵敏度基础上得到更多化合物的信息和增加可分析化合物种类,对我们分析人员也是一种挑战。HPLC/MS/MS结合了LC的强大的分离分析能力和MS灵敏的鉴定及结构解析能力,提供了可靠、精确的相对分子质量及结构信息,简化了试验步骤,节省了样品准备时间和分析时间,作为当今最重要的分离和鉴定方法之一,在分析化学领域中发挥着更加重要的作用
3. GC-MS,LC-MS,LC-MS-MS,HPLC的区别都是什么
1、hplc:
高效液相色谱。
2、lc-ms:液相色谱
质谱联用。
3、lc-ms-ms:液相二级质谱,是将经版过第一次质谱检权测的离子以某种方式碎裂后再进行质谱检测。
4、gc-ms是气相色谱和质谱联用,gc分离,ms检测,lc-ms是液质联用,lc是分离,ms是检测。
5、lc-ms-ms是液相色谱-串联质谱,比lc-ms更精密一些;
hplc又称“高压液相色谱”、“高速液相色谱”,是可以分离和检测溶解在溶液中的微量物质。
4. 化工中GC、LC、MS都是代表什么啊具体一点。
GC 是气相色谱,Gas chromatography
LC 是液相色谱 Liquid chromatography
MS 是质谱分析 Mass Spectrometry
5. LC-MS仪器的使用
Originally posted by yunmeng6001 at 2009-11-26 15抢个沙发,俺实验室就有一台,不过用说的可不好教。:P 能将操作规程告专诉我吗?剩余属的金币全归你了.........:P
6. LC/ESI MS得到的质谱图可以只是分子离子峰,不是准分子离子峰吗
这个要看结构,一般ESI等软电离方式得到的都是准分子离子峰,不过如果你的化合物分子结构本身带电荷,那么是可以出分子离子峰的。
7. HPLC,LC/MS是做什么的
HPLC, High performance liquid chromatography, is used to separate, identify, and quantify compounds.
LC/MS, Liquid chromatography-mass spectrometry, is a technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry.
8. GC, GC/MS, LS, LC/MS, ICP-MS, IR, UV, RMN分别是什么测试方法~主要测试什么~~~球高人指点~~谢谢
GC :Gas Chromatography 气相色谱法 用气体作为移动相的色谱法。根据所用固定相的不同可分为两类:固定相是固体的,称为气固色谱法;固定相是液体的则称为气液色谱法 气相色谱系统由盛在管柱内的吸附剂或惰性固体上涂着液体的固定相和不断通过管柱的气体的流动相组成。将欲分离、分析的样品从管柱一端加入后,由于固定相对样品中各组分吸附或溶解能力不同,即各组分在固定相和流动相之间的分配系数有差别,当组分在两相中反复多次进行分配并随移动相向前移动时,各组分沿管柱运动的速度就不同,分配系数小的组分被固定相滞留的时间短,能较快地从色谱柱末端流出
GC-MS是气相色谱和质谱联用,GC分离,MS检测;GPC是凝胶渗透色谱,LC分离,一般情况是UV检测。前者是GC,后者是LC。
其次GC-MS是用MS检测分子离子峰,从而推断分子量;GPC是做大分子物质的,比如蛋白质、多肽,是根据分子量和空间几何形状来分离的(先大后小),得到的是一个顺序(从大到小),或一个范围(要加Mark)
质谱仪的联用技术
质谱仪可以与其他仪器联用,如气相色谱-质谱联用(GC/MS)、
高效液相色谱-质谱联用(HPLC/MS);也可以质谱-质谱联用(MS-MS)。
(1) GC/MS、HPLC/MS 仪:
基于色谱和质谱的仪器灵敏度相当,加之使分离效果好的色谱成
为质谱的进样器,而速度快、分离好、应用广的质谱仪作为色谱的鉴
定器,使它们成为目前最好的用于分析微量的有机混合物的仪器。
(2)液质联用与气质联用的区别:
气质联用仪(GC-MS)是最早商品化的联用仪器,适宜分析小分
子、易挥发、热稳定、能气化的化合物;用电子轰击方式(EI)
得到的谱图,可与标准谱库对比。
液质联用(LC-MS)主要可解决如下几方面的问题:不挥发性化合
物分析测定;极性化合物的分析测定;热不稳定化合物的分析
测定;大分子量化合物(包括蛋白、多肽、多聚物等)的分析
测定;一般没有商品化的谱库可对比查询,只能自己建库或自
己解析谱图。 所以目前液质联用在环境领域主要应用于有标准
物质参照情况下的定性分析。
电感耦合等离子体质谱ICP-MS 所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。强大的电流产生高温,瞬间使氩气形成温度可达10000k的等离子焰炬。样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1L/min。冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15L/min
IR,红外光谱
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外 红外光谱
光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法
应用: 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。
红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知 液态水的红外光谱物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定
UV,紫外光谱:配合物组成及其稳定常数的测定 定量分析结构分析定性分析应用范围定义紫外光谱是分子中某些价电子吸收了一定波长的电磁波,由低能级跃近到高能级而产生的一种光谱
当分子中的电子吸收能量后会从基态跃迁到激发态,然后放出能量(辐射出特征谱线)。回到基态 而辐射出特征普线的波长在紫外区中就叫做紫外光谱
定性分析
在有机化合物的定性分析中,紫外-可见光谱适用于不饱和有机化合物,尤其是共轭体系的鉴定,以此推断未知物的骨架结构。此外,可配合红外光谱、核磁共振波谱法和质谱法进行定性鉴定和结构分析,因此它仍不失为是一种有用的辅助方法。一般有两种定性分析方法,比较吸收光谱曲线和用经验规则计算最大吸收波长λmax,然后与实测值进行比较。
结构分析
结构分析可用来确定化合物的构型和构象。如辨别顺反异构体和互变异构体。
定量分析
紫外-可见分光光度定量分析的依据是Lambert-Beer定律,即在一定波长处被测定物质的吸光度与它的溶度呈线性关系。应此,通过测定溶液对一定波长入射光的吸光度可求出该物质在溶液中的浓度和含量。种常用的测定方法有:单组分定量法、多组分定量法、双波长法、示差分光光度法和导数光谱法等。
配合物组成及其稳定常数的测定
测量配合物组成的常用方法有两种:摩尔比法(又称饱和法)和等摩尔连续变化法(又称Job法)。
酸碱离解常数的测定
光度法是测定分析化学中应用的指示剂或显色剂离解常数的常用方法,该法特别适用于溶解度较小的弱酸或弱碱。
NMR,核磁共振波谱
核磁共振波谱分析法(NMR)是分析分子内各官能团如何连接的确切结构的强有力的工具。 磁场中所处的不同能量状态(磁能级)。原子核由质子、中子组成,它们也具有自旋现象。描述核自旋运动特性的是核自旋量子数I。不同的核在一个外加的高场强的静磁场(现代NMR仪器由充电的螺旋超导体产生)中将分裂成2I+1个核自旋能级(核磁能级),其能量间隔为ΔE。对于指定的核素再施加一频率为ν的属于射频区的无线电短波,其辐射能量hν恰好与该核的磁能级间隔ΔE相等时,核体系将吸收辐射而产生能级跃迁,这就是核磁共振现象。
核磁谱在蛋白质研究上的应用
利用核磁谱研究蛋白质,已经成为结构生物学领域的一项重要技术手段。X射线单晶衍射和核磁都可获得高分辨率的蛋白质三维结构,不过核磁常局限于35kDa以下的小分子蛋白,尽管随着技术的进步,稍大的蛋白质结构也可以被核磁解析出来。另外,获得本质上非结构化(Intrinsically Unstructured)的蛋白质的高分辨率信息,通常只有核磁能够做到。 蛋白质分子量大,结构复杂,一维核磁谱常显得重叠拥挤而无法进行解析,使用二维,三维甚至四维核磁谱,并采用13C和15N标记可以简化解析过程。另外,NOESY是最重要的蛋白质结构解析方法之一,人们通过NOESY获得蛋白质分子内官能团间距,之后通过电脑模拟得到分子的三维结构。
9. “HPLC”、“LC-MS”和“LC-MS-MS”是什么意思
1、HPLC:抄 高效液相色谱袭。
2、LC-MS:液相色谱 质谱联用。
3、LC-MS-MS:液相二级质谱,是将经过第一次质谱检测的离子以某种方式碎裂后再进行质谱检测。
4、GC-MS是气相色谱和质谱联用,GC分离,MS检测,LC-MS是液质联用,LC是分离,MS是检测。
5、LC-MS-MS是液相色谱-串联质谱,比LC-MS更精密一些; HPLC又称“高压液相色谱”、“高速液相色谱”,是可以分离和检测溶解在溶液中的微量物质。