dsc仪器测什么的
⑴ DSC原理的差示扫描量热仪(DSC)的基本原理
DSC原理的差示扫描量热仪(DSC)的基本原理是试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以记录试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。
差示扫描量热法有补偿式和热流式两种。在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
曲线的纵轴为单位时间所加热量,横轴为温度或时间。曲线的面积正比于热焓的变化。DSC与DTA原理相同,但性能优于DTA,测定热量比DTA准确,而且分辨率和重现性也比DTA好。它可以用来研究生物膜结构和功能、蛋白质和核酸构象变化等。
(1)dsc仪器测什么的扩展阅读
差示扫描量热仪 (Differential Scanning Calorimeter),测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。
材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。
差示扫描量热仪应用范围:高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度。
主要特点:
1、全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性。
2、数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中。
3、仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。
⑵ 请教一下DSC仪器的使用方法
什么是组态?
在使用工控软件中,我们经常提到组态一词,组态英文是“Configuration”,其意义究竟是什么呢?简单的讲,组态就是用应用软件中提供的工具、方法、完成工程中某一具体任务的过程。
与硬件生产相对照,组态与组装类似。如要组装一台电脑,事先提供了各种型号的主板、机箱、电源、CPU、显示器、硬盘、光驱等,我们的工作就是用这些部件拼凑成自己需要的电脑。当然软件中的组态要比硬件的组装有更大的发挥空间,因为它一般要比硬件中的“部件”更多,而且每个 “部件” 都很灵活,因为软部件都有内部属性,通过改变属性可以改变其规格(如大小、性状、颜色等)。
在组态概念出现之前,要实现某一任务,都是通过编写程序(如使用BASIC,C,FORTRAN等)来实现的。编写程序不但工作量大、周期长,而且容易犯错误,不能保证工期。组态软件的出现,解决了这个问题。对于过去需要几个月的工作,通过组态几天就可以完成。
组态软件是有专业性的。一种组态软件只能适合某种领域的应用。组态的概念最早出现在工业计算机控制中。如DCS(集散控制系统)组态,PLC(可编程控制器)梯形图组态。人机界面生成软件就叫工控组态软件。其实在其他行业也有组态的概念,人们只是不这么叫而已。如AutoCAD,PhotoShop,办公软件(PowerPoint)都存在相似的操作,即用软件提供的工具来形成自己的作品,并以数据文件保存作品,而不是执行程序。组态形成的数据只有其制造工具或其他专用工具才能识别。但是不同之处在于,工业控制中形成的组态结果是用在实时监控的。组态工具的解释引擎,要根据这些组态结果实时运行。从表面上看,组态工具的运行程序就是执行自己特定的任务。
虽然说组态就是不需要编写程序就能完成特定的应用。但是为了提供一些灵活性,组态软件也提供了编程手段,一般都是内置编译系统,提供类BASIC语言,有的甚至支持VB。
组态软件的功能,现在的状况及将来的发展趋势。
1. 总的发展趋势
组态软件是工业应用软件的一个组成部分,其发展受到很多因素的制约。归根结底,应用的带动对其发展起着最为关键的推动作用。
未来的传感器、数据采集装置、控制器的智能化程度越来越高,实时数据浏览和管理的需求日益高涨,有的买主甚至要求在自己的办公室里监督定货的制造过程。有的装置直接内嵌“Web Server”,通过以太网就可以直接访问过程实时数据。即使这样,也不能认为不再需要组态软件了。
用户要求的多样化,决定了不可能有哪一种产品囊括全部用户的所有要求,直接用户对监控系统人机界面的需求不可能固定为单一的模式,因此直接用户的监控系统是始终需要“组态”和“定制”的。这就导致组态软件不可能退出市场,因为需求是存在的。
类似OPC这样的组织的出现,以及现场总线、尤其是工业以太网的快速发展,大大简化了异种设备间互连、开发I/O设备驱动软件的工作量。I/O驱动软件也逐渐会朝标准化的方向发展。
2. 组态软件功能的变迁
由单一的人机界面朝数据处理机方向发展,管理的数据量越来越大。最早的组态软件用来支撑自动化系统的硬件。那时侯,硬件系统如果没有组态软件的支撑就很难发挥作用,甚至不能正常工作。现在的情况有了很大改观。一方面软件部分地与硬件发生分离,大部分自动化系统的硬件和软件现在不是由同一个厂商提供,这样就为自动化软件的发展提供了可以充分发挥作用的舞台。
实时数据库的作用将进一步加强。实时数据库存储和检索的是连续变化的过程数据,它的发展离不开高性能计算机和大容量硬盘,现在越来越多的用户通过实时数据库来分析生产情况、汇总和统计生产数据,作为指挥、决策的依据。
在最终用户的眼里,组态软件在一个自动化系统中发挥的作用逐渐增大,甚至有的系统就根本不能缺少组态软件。这其中的主要原因是软件的功能强大,用户也存在普遍的需求,广大用户在厂家强大的宣传攻势面前逐渐认清了软件的价值所在。
3. 推动组态软件发展的动力
需求是推动其发展的第一动力,市场会逐步扩大。组态软件市场的崛起一方面为最终用户节省了系统投资,另外也为用户解决了实际问题。现在用户购买组态软件虽然也需要一定的投资,但是和以前相比,投资额得到了大大降低。使用组态软件,用户可以做到“花了少量的钱,办成了大事情”。
中国的现代化建设正处于上升期,新项目的上马、基础设施的改造大量需要组态软件,另一方面,传统产业的改造、原有系统的升级和扩容也需要组态软件的支撑。
社会信息化的加速是组态软件市场增长的强大推动力。随着经济发展水平的提升,信息化社会将为组态软件带来更多的市场机会。
4. 用户对组态软件的需求变化
专用系统所占比例日益提高。组态软件的灵活程度和使用效率是一对矛盾,虽然组态软件提供了很多灵活的技术手段,但是在多数情况下,用户只使用其中的一小部分,而使用方法的复杂化又给用户熟悉和掌握软件带来的很多不必要的麻烦。这也是现在仍然有很多用户还在自己用VB编写自动化监控系统的主要原因。在有些应用领域,自动监控的目标及其特性比较单一(或可枚举,或可通过某种模板自主定义、添加、删除、编辑)且数量较多,用户希望自动生成大部分自动监控系统,例如在电梯自动监控、动力设备监控、铁路信号监控等应用系统。这种应用系统具有一些“傻瓜”型软件的特征,用户只需用组态软件做一些系统硬件及其参数的配置,就可以自动生成某种特定模式的自动监控系统,如果用户对自动生成的监控系统的图形界面不满意,还可以进行任意修改和编辑,这样既满足了用户对简便性的要求,又同时配备比较完善的编辑工具。
组态软件应该向更多的应用领域拓展和渗透。目前的组态软件均产生于过程工业自动化,很多功能没有考虑其他应用领域的需求。例如:化验分析(色谱仪、红外仪等,包括在线分析)、虚拟仪器(例如LabView的口号是The Software is the Instrument)、测试(如测井、机械性能试验、碰撞试验等的数据记录与回放等)、信号处理(如记录和显示轮船的航行数据:雷达信号、GPS数据、舵角、风速等)。这些领域大量地使用实时数据处理软件,而且需要人机界面,但是由于现有组态软件为这些应用领域考虑得太少,不能充分满足系统的要求,因而目前这些领域仍然是专用软件占统治地位。随着计算机技术的飞速发展,组态软件应该更多地总结这些领域的需求,设计出符合应用要求的开发工具,更好地满足这些行业对软件的需求,进一步减少这些行业在自动测试、数据分析方面的软件成本,提高系统的开放程度。
嵌入式应用进一步发展,在过去的十年间,工业PC及其相关的数据采集、监控系统硬件的销售额一直保持高额增长。工业PC的成长是因为软件开发工具丰富,比较容易上手,而用户接受工业PC的主要原因是一次性硬件成本得到了降低,但是后续的维护和升级费用明显高昂,经常带来一些间接损失。商品化嵌入式组态软件可以有效地解决工业PC监控系统的工作效率、维护和升级等问题,彻底摆脱个人行为的束缚,使工业PC监控系统大踏步走入自动化系统高端市场。
5. 影响组态软件发展的因素
软件质量是影响产品发展的主要因素。在竞争不断加剧的今天,企业规模、科研开发的投入量、质量体系建设情况等对组态软件的质量影响甚大。
6. 未来技术走势
很多新的技术将不断地被应用到组态软件当中,组态软件装机总量的提高会促进在某些专业领域专用版软件的诞生,市场被自动地细分了。为此,一种称为“软总线”的技术将被广泛采用。在这种体系结构下,应用软件以中间件或插件的方式被“安装”在总线上,并支持热插拔和即插即用。这样做的优点是:所有插件遵从统一标准,插件的专用性强,每个插件开发人员之间不需要协调,一个插件出现故障不会影响其他插件的运行。XML技术将被组态软件厂商善加利用,来改变现有的体系结构,它的推广也将改变现有组态软件的某些使用模式,满足更为灵活的应用需求。
7. 国际化及入世的影响
长期以来,中国的组态软件市场都是由国外的产品占主角,中国本土的组态软件进入国际市场还有很长的路要走,需要具有综合优势。中国的工程公司、自动化设备生产商在国际市场取得优势对组态软件进入国际市场也具有一定的推动作用。相信民族组态软件的崛起是迟早的事情。
与其他软件产品相比,组态软件和IT类软件不同,有自己的特殊性,具有系统的概念,使用范围也不是很广,面临的国际竞争没有其他类似办公软件或操作系统那样激烈,因此中国的本土软件很容易崛起。但是毕竟我们是跟在国外产品的后面发展起来的,要想全面超过国外的竞争对手,就必须坚持走好自己的道路,尽量减少效仿,突出特色,以客户需求为中心,积极创新。只有这样,本土的软件才能够具有稳固的根基。
参考资料:http://www.dq86.com/bbs/dispbbs.asp?boardid=14&id=286
⑶ 请问一下DSC是什么它什么做什么用的
回答者:复吴先生想知道 说道的离制散控制系统DCS(distributed control system的简称) 是工厂控制用的系统。
热分析中有个DSC:差示扫描量热法 differential scanning calorimetry;DSC。
差示扫描量热法是在程序温度控制下,测量输送给被测物质和参比物质能量差与温度之间关系的一种技术,简称DSC。根据测量方法的不同,又分为两种类型:功率补偿型DSC和热流型DSC。其主要特点是需要样品量少(几到几十毫克),使用的温度范围宽,分辩能力高和灵敏度高。费用低。由于它们能定量测量各种热力学参数(如热焓、熵和比热)和动力学参数,所以在应用科学和理论研究中广泛应用。
⑷ 差示扫描热示计(DSC)是测什么用的呀
它是抄利用差示扫描量热法进行袭材料性质测量的仪器,材料在不同温度下许多性质会发生变化,比如热容,潜热等等;测量方法简单的说就是调节温度,测量相应物理量的变化,一般是指热力学参数,当然也可测其他参数.
你可以参考一下这个网址:
http://ke..com/view/1940232.htm?fr=ala0_1
或者干脆搜"差示扫描量热法"
⑸ 测试DSC,哪个品牌的仪器比较好
DSC示差扫描量热法
示差扫描量热法()这项技术被广泛应用于一系列应用,它既是一种回例行答的质量测试和作为一个研究工具。
该设备易于校准,使用熔点低铟例如,是一种快速和可靠的方法热分析示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;
反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。
如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
⑹ 测dsc有什么用
分析物质的热学性质,比如熔点,分解温度等等
⑺ 简要叙述dta和dsc在测量原理上有什么异同
简要叙述dta和dsc都是热分析法,两者在测量原理上适用条件以及内容等不同,具体如下。
一、相同点
dta和dsc两者都是热分析法。都是在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系。
二、不同点
1、两者概念不同
DTA是差热分析法,是以某种在一定实验温度下不发生任何化学反应和物理变化的稳定物质(参比物)与等量的未知物在相同环境中等速变温的情况下相比较,未知物的任何化学和物理上的变化,与和它处于同一环境中的标准物的温度相比较,都要出现暂时的增高或降低。
DSC是差示扫描量热法。差示扫描量热仪记录到的曲线称DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数。
2、两者适用条件不同
在DTA中,用的是温差热电偶,目的是反映这种微小的温差变化,它是由两种不同的金属丝制成。通常用镍铬合金或铂铑合金的适当一段,其两端各自与等粗的两段铂丝用电弧分别焊上,即成为温差热电偶。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
3、两者图像关系不同
在DTA的等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线。
DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
(7)dsc仪器测什么的扩展阅读
常用的热分析法及其优点
最常用的热分析法有:差(示)热分析(DTA)、热重量法(TG)、导数热重量法(DTG)、差示扫描量热法(DSC)、热机械分析(TMA)和动态热机械分析(DMA)。此外还有:逸气检测(EGD)、逸气分析(EGA)、 扭辫热分析(TBA)、射气热分析、热微粒分析、热膨胀法、热发声法、热光学法、热电学法、热磁学法、温度滴定法、直接注入热焓法等。
优点:
1、 可在宽广的温度范围内对样品进行研究;
2、可使用各种温度程序(不同的升降温速率);
3、对样品的物理状态无特殊要求;
4、所需样品量很少(0.1μg- 10mg);
5、仪器灵敏度高(质量变化的精确度达10-5);
6、可与其他技术联用;
7、 可获取多种信息。
⑻ 美国TA的DSC测试仪是什么
工作原理
Q系列差示扫描量热仪DSC 应用行业:橡塑,制药,食品,化工
TA仪器是全球热分析技术的领导者,而差示扫描量热仪(DSC)则是TA的核心技术之一。在过去的5年中,我们始终致力于提高DSC的基本测试技术,如今,我们很自豪地为您介绍最新DSC研发成果——Q2000,Q200和Q20。
在位于美国Delaware州New Castle的TA仪器拥有国际标准化生产线,TA仪器能够满足任何应用需求或预算的限制,同时TA公司以完善的客户服务和支持回报客户,这些都是TA仪器公司的出众之处。
DSC测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,
特别是材料的研发、性能检测与质量控制。材料的特性,如玻璃化转变温
度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导
期等,都是DSC的研究领域。
TA 仪器公司的最新Tzero™零技术,是DSC发展历程中的一项革新性技术,
大大提高了基线的稳定性、测量的灵敏度和解析度。Tzero技术可以直接
测量热容Cp,并且能大大提高调制DSC实验的速度和精确度。每一款全新的DSC测试系统都空前地提高了DSC的性能水平。
主要特点
1.全新的T零技术,更好的解析度和分辨率以及更好的基线稳定性
2.调制DSC技术,将总热流分为可逆和不可逆热流,便于解释实验结果
3.触摸屏,直观方便;
4.数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中;
5.多种环境控制系统,可以实现快速降温和恒温系统;
6.专利的“白金软件”允许使用者在仪器非繁忙运作的时隙,安排进行一系列的功能运作,包括自动诊断、自动校准和自动查证。
7.全新的Tzero压片机,可适用于多种标准和密封样品盘。多种模块用不同颜色表示,依靠磁性进行安装且不需要工具,便于更换。
Q2000性能:
高级T零 (Tzero) 技术
高级调制MDSC技术
直接测量热容Cp
触摸屏
用户可更换DSC炉子
压力DSC单元(选配)
光量热单元(选配)
数字式流量控制
50位自动进样器
自动加载炉盖
温度范围 (配低温系统):-180 to 725℃
量热动态范围: +/- 500 mW
量热精度 (金属标样):± 0.05 ℃
灵敏度:0.2 微瓦
相对解析度:2.9
PLATIUM软件
Q200性能:
T零 (Tzero) 技术
调制MDSC技术
触摸屏
光量热单元(选配)
数字式流量控制(选配)
50位自动进样器(选配)
自动加载炉盖
温度范围 (配低温系统):-180 to 725℃
量热动态范围: +/- 500 mW
量热精度 (金属标样):± 0.05 ℃
灵敏度:0.2 微瓦
相对解析度:2.1
PLATIUM软件
Q20/AQ20性能:
数字式流量控制(选配)
温度范围 (配低温系统):-180 to 725℃
量热动态范围: +/- 500 mW
量热精度 (金属标样):± 0.05 ℃
灵敏度:1.0 微瓦
相对解析度:2.1
PLATIUM软件
1.Q2000,最顶级的DSC产品,高级T零技术和MDSC,温度范围(配低温系统):-180至725℃
2.Q200,T零技术和MDSC技术的完美结合,研发级DSC,温度范围(配低温系统):-180至725℃
3.Q20,常规DSC和质量控制用DSC,温度范围(配低温系统):-180至725℃
4.Q20P,压力DSC,最大压力 7MPa,温度范围(配低温系统):-130至725℃
5.AQ20, 标准配有自动进样器的DSC,特别适用于多样品检验的质量控制。
5.Q600,同步热分析,同步测量DSC、TGA和DTA信号,温度范围室温至1500℃
⑼ dsc分析是什么
DSC热分析法(Differential Scanning calorimeter),又称差示扫描量热法,是六十年代以后研制出的一种热分析方法。它回是在程序控制答温度下,测量输入到试样和参比物的功率差与温度的关系。差示扫描量热仪记录到的曲线称DSC曲线。根据测量的方法的不同,又分为两种类型:功率补偿型DSC和热流型DSC。它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测定多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。该法使用温度范围宽(-175~725℃)、分辨率高、试样用量少。适用于无机物、有机化合物及药物分析。
相关链接:http://ke..com/view/2399109.htm