焊接时不管是什么材料其焊接能量越大越好
Ⅰ 焊接知识的问题
焊接方法的分类焊接方法分类
一般都根据热源的性质、形成接头的状态及是否采用加压来划分。
1、熔化焊
熔化焊是将焊件接头加热至熔化状态,不加压力完成焊接的方法。它包括气焊、电弧焊、电渣焊、激光焊、电子束焊、等离子弧焊、堆焊和铝热焊等。
2、压焊
压焊是通过对焊件施加压力(加热或不加热)来完成焊接的方法。它包括爆炸焊、冷压焊、摩擦焊、扩散焊、超声波焊、锻焊、高频焊和电阻焊等。
3、钎焊
钎焊是采用比母材熔点低的金属材料作钎料,在加热温度高于钎料低于母材熔点的情况下,利用液态钎料润湿母材,填充接头间隙,并与母材相互扩散实现连接焊件的方法。它包括硬钎焊(用熔点高于450℃的钎料铜、银、镍合金进行焊接)、软钎焊(用熔点低于450℃的钎料铅、锡合金进行焊接)等。又分为火焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊、电子束钎焊、真空钎焊。
焊接的特点及应用
焊条电弧焊
电弧是两带电导体之间持久而强烈的气体放电现象。 在焊接中,采用直流电焊机时,有正接和反接两种方法。而大量使用的是交流电弧焊设备,电极的极性频繁交变,不存在极性问题,
1)正接——焊件接电源正极,焊条接负极。一般焊接作业均采用正接法。
2)反接——焊件接电源负极,焊条接正极。一般焊接薄板时,为了防止烧穿,采用反接法进行焊接作业。
埋弧自动焊
电弧在焊剂层下燃烧进行焊接的方法,称为埋弧焊。埋弧焊的引弧、送进焊条一般均由自动装置来完成,因此又称为埋弧自动焊。埋弧自动焊的主要特点
1、生产率高
2、焊接质量高而且稳定
3、节约焊接材料
4、改善了劳动条件
5、适用于平焊长直焊缝和较大直径的环形焊缝。对于短焊缝、曲折焊缝、狭窄位置及薄板的焊接,不能发挥其长处。
埋弧自动焊的工艺特点
1、焊前准备工作要求严格
2、焊接熔深大
3、采用引弧板和引出板
4、采用焊剂垫或钢垫板
5、采用导向装置
等离子弧焊与切割 等离子弧焊的特点
1、能量密度大,温度梯度大,热影响区小,可焊接热敏感性强的材料或制造双金属件。
2、电弧稳定性好,焊接速度高,可用穿透式焊接,使焊缝一次双面成型,表面美观,生产率高。
3、气流喷速高,机械冲刷力大,可用于焊接大厚度工件或切割大厚度不锈钢、铝、铜、镁等合金。
4、电弧电离充分,电流下限达0.1A以下仍能稳定工作,适合于用微束等离子弧(0.2~30A)焊接超薄板(0.01~2mm),如膜盒、热电偶等。
气体保护焊
一、氩弧焊
使用氩气作为保护气体的气体保护焊称为压弧焊。
氩气是惰性气体,可保护电极和熔化金属不受空气的有害作用。
氩弧焊按所用电极的不同分为熔化极氩弧焊和非熔化极氩弧焊两种。
1、非熔化极氩弧焊
电极只作为发射电子、产生电弧用,填充金属另加。
常用掺有氧化钍或氧化铈的钨极,其特点是电子热发射能力强,熔点沸点高(为3700K和5800K)。
2、熔化极氩弧焊
钨极氩弧焊电流小、熔深浅。中厚以上的钛、铝、铜等合金的焊接多选用高生产率的熔化极氩弧焊。
3、氩弧焊的特点
(1)由于氩气的保护,它适于各类合金钢、易氧化的有色金属,以及锆、钽、钼等稀有金属的焊接。
(2)氩弧焊电弧稳定,飞溅小,焊缝致密,表面没有熔渣,成形美观,焊接变形小。
(3)明弧可见,便于操作,容易实现全位置自动焊接。
(4)钨极脉冲氩弧焊接可焊接0.8mm以下的薄板及某些异种金属。
二、二氧化碳气体保护焊
利用CO2作为保护气体的气体保护焊,称为二氧化碳气体保护焊。
它的保护作用主要是使焊接区与空气隔离,防止空气中的氮气对熔化金属的有害作用。
焊接时:
2CO2=2CO+O2
CO2=C+O2
因此焊接是在CO2、CO、O2氧化气氛中进行的。
二氧化碳气体保护焊的特点:
1、焊速高,可实现自动焊,生产率高。
2、为明弧焊接,易于控制焊缝成形。
3、对铁锈敏感性小、焊后熔渣少。
4、价格低廉。
5、焊接飞溅与气孔仍是生产中的难点。
真空电子束焊
真空电子束焊是利用定向高速运动的电子束流撞击工件使动能转化为热能而使工件熔化,形成焊缝。
真空电子束焊的特点:
1、在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。
2、电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。
摩擦焊
摩擦焊是利用焊件表面相互摩擦所产生的热量,使端面达到热塑性状态,然后迅速顶锻完成焊接的一种压焊方法。
摩擦焊的特点:
1、由于摩擦,焊件接触表面的氧化膜和杂质被清楚,使焊接接头组织致密,不产生气孔和夹渣等缺陷。
2、即可焊同种金属,更适合于异种金属的焊接。
3、生产率高。
电阻焊
电阻焊是在焊件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的工艺方法。
电阻焊的种类很多,常用的有点焊、缝焊和对焊三种。
一、点焊
点焊是将焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。
点焊的工艺过程:
1、预压,保证工件接触良好。
2、通电,使焊接处形成熔核及塑性环。
3、断点锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。
二、缝焊
缝焊是将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。
缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。
三、对焊
对焊是使焊件沿整个接触面焊合的电阻焊方法。
1、电阻对焊
电阻对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法,
电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。
2、闪光对焊
闪光对焊是将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。
闪光焊的接头质量比电阻焊好,焊缝力学性能与母材相当,而且焊前不需要清理接头的预焊表面。闪光对焊常用于重要焊件的焊接。可焊同种金属,也可焊异种金属;可焊0.01mm的金属丝,也可焊20000mm的金属棒和型材。
激光焊
激光焊是以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。
激光焊的特点:
1、激光焊能量密度大,作用时间短,热影响区和变形小,可在大气中焊接,而不需气体保护或真空环境。
2、激光束可用反光镜改变方向,焊接过程中不用电极去接触焊件,因而可以焊接一般电焊工艺难以焊到的部位。
3、激光可对绝缘材料直接焊接,焊接异种金属材料比较容易,甚至能把金属与非金属焊在一起。
Ⅱ 气焊焊接什么材料时,焊接性良好
气焊虽然也能够焊接合金钢、铸铁和有色金属,但还是焊接低碳钢材料时,焊接性专良好。
1、气焊焊接属低碳钢时,焊接性良好表现在,只要焊件厚度不是特别的厚,不必使用任何焊剂,就能获得各项机械性能达到母材标准的,质量完全合格的焊接接头。
2、气焊在焊接合金钢、铸铁和有色金属时,熔池中容易产生高熔点的稳定氧化物,如Cr2O3、SiO2和Al2O3等,使焊缝中夹渣。故在焊接时,必须使用适当的焊剂,可与这类氧化物结成低熔点的熔渣,以利浮出熔池。因为金属氧化物多呈碱性,所以一般都用酸性焊剂,如硼砂、硼酸等。焊铸铁时,往往有较多的SiO2出现,因此通常又会采用碱性焊剂,如碳酸钠和碳酸钾等。
通过第1、2的对比,证明气焊还是焊接低碳钢材料时,焊接性良好。
Ⅲ 高分!!!求焊接题答案~~~~~~~~~~
1:错
2:对
3:错
4:对
5:对
6:对
7:错
8:对
9:对
10:错
Ⅳ 焊接的原理是什么
焊 接 电 弧
焊接电弧的产生
焊接电弧的概念
电弧是一种气体导电(放电)现象。焊接电弧则是两个电极之间强烈而持久的放电现象。电弧产生的条件就是气体要成为导电体。通常气体是不导电的,气体成为导体则需要两个条件,即①阴极电子发射和②气体电离。
①阴极电子发射
阴极的金属表面连续地向外发射电子的现象叫做阴极电子发射。一般情况下,电子是不能离开金属表面向外发射的。如果阴极电子获得一定能量后,就可以克服金属内部正电荷对它的引力而向外发射。这种能量可以是热能、电能或者运动能量,即阴极在高温状态下,电子运动速度加快,当其能量大于正电荷对其的静电引力,即可有电子发射;或者当两极间的电场强度达到一定程度后,电场对阴极表面电子的吸引力大于正电荷的静电引力时,也可发生电子发射。同时,在电场作用下,阴离子的运动速度加快,撞击阴极表面,将能量传递给阴极,也可使电子发射。
② 气体电离
中性的气体原子在受到电场或热能作用时,气体原子中电子获得足够的能量,克服原子核对电子的引力,而成为自由电子。中性原子因失去带负电荷的电子而成为带正电荷的正离子的过程,就叫做气体电离。当有阴极电子发射,电子高速运动与气体原子相互碰撞,如果撞击的能量大于气体原子核与电子间的引力时,则发生气体电离;或者在高温下,气体原子的运动速度加快,原子间相互碰撞,也会引起气体电离。
焊接电弧的引燃
焊条与焊件之间是有电压的,当它们相互接触时,相当于电弧焊电源短接。由于接触点很大,短路电流很大,则产生了大量电阻热,使金属熔化,甚至蒸发、汽化,引起强烈的电子发射和气体电离。这时,再把焊丝与焊件之间拉开一点距离(3~4㎜),这样,由于电源电压的作用,在这段距离内,形成很强的电场,又促使产生电子发射。同时,加速气体的电离,使带电粒子在电场作用下,向两极定向运动。弧焊电源不断的供给电能,新的带电粒子不断得到补充,形成连续燃烧的电弧。
焊条(或焊丝)的加热和熔化
熔化极电弧焊时,焊条具有两个作用:一方面作为电弧焊的一个电极;另一方面作为填充金属形成焊缝。焊条的熔化主要是靠焊接电流通过焊条所产生的电阻热,而焊接电弧产生的热量对焊条熔化属次要作用(大部分热量是用来熔化母材、药皮和焊剂)。
电阻热的大小决定于焊条伸出长度、电流密度和焊条本身的电阻率。焊条伸出长度越大,则通电的时间增长,电阻热增大;电流密度增加,电阻热也增大;同种材料焊条直径约大,电阻率越小,则产生的电阻热越小。但是过高的电阻热会给焊接过程带来不利的影响,将使焊条的药皮在进入熔化区前发红变质,失去保护和冶金作用。在自动焊时,过高的电阻热将使焊丝崩断,影响焊接质量。为此,在焊接过程中要控制焊条伸出长度
Ⅳ 关于焊接的各种形式问题
1、焊条电弧焊:
原理——用手工操作焊条进行焊接的电弧焊方法。利用焊条与焊件之间建立起来的稳定燃烧的电弧,使焊条和焊件熔化,从而获得牢固的焊接接头。属气-渣联合保护。
主要特点——操作灵活;待焊接头装配要求低;可焊金属材料广;焊接生产率低;焊缝质量依赖性强(依赖于焊工的操作技能及现场发挥)。
应用——广泛用于造船、锅炉及压力容器、机械制造、建筑结构、化工设备等制造维修行业中。适用于(上述行业中)各种金属材料、各种厚度、各种结构形状的焊接。
2、埋弧焊(自动焊):
原理——电弧在焊剂层下燃烧。利用焊丝和焊件之间燃烧的电弧产生的热量,熔化焊丝、焊剂和母材(焊件)而形成焊缝。属渣保护。
主要特点——焊接生产率高;焊缝质量好;焊接成本低;劳动条件好;难以在空间位置施焊;对焊件装配质量要求高;不适合焊接薄板(焊接电流小于100A时,电弧稳定性不好)和短焊缝。
应用——广泛用于造船、锅炉、桥梁、起重机械及冶金机械制造业中。凡是焊缝可以保持在水平位置或倾斜角不大的焊件,均可用埋弧焊。板厚需大于5毫米(防烧穿)。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢、复合钢材等。
3、二氧化碳气体保护焊(自动或半自动焊):
原理:利用二氧化碳作为保护气体的熔化极电弧焊方法。属气保护。
主要特点——焊接生产率高;焊接成本低;焊接变形小(电弧加热集中);焊接质量高;操作简单;飞溅率大;很难用交流电源焊接;抗风能力差;不能焊接易氧化的有色金色。
应用——主要焊接低碳钢及低合金钢。适于各种厚度。广泛用于汽车制造、机车和车辆制造、化工机械、农业机械、矿山机械等部门。
4、MIG/MAG焊(熔化极惰性气体保护焊):
原理——采用惰性气体作为保护气,使用焊丝作为熔化电极的一种电弧焊方法。
保护气通常是氩气或氦气或它们的混合气。MIG用惰性气体,MAG在惰性气体中加入少量活性气体,如氧气、二氧化碳气等。
主要特点——焊接质量好;焊接生产率高;无脱氧去氢反应(易形成焊接缺陷,对焊接材料表面清理要求特别严格);抗风能力差;焊接设备复杂。
应用——几乎能焊所有的金属材料,主要用于有色金属及其合金,不锈钢及某些合金钢(太贵)的焊接。最薄厚度约为1毫米,大厚度基本不受限制。
5、TIG焊(钨极惰性气体保护焊)
原理——在惰性气体保护下,利用钨极与焊件间产生的电弧热熔化母材和填充焊丝(也可不加填充焊丝),形成焊缝的焊接方法。
主要特点——适应能力强(电弧稳定,不会产生飞溅);焊接生产率低(钨极承载电流能力较差(防钨极熔化和蒸发,防焊缝夹钨));生产成本较高。
应用——几乎可焊所有金属材料,常用于不锈钢,高温合金,铝、镁、钛及其合金,难熔活泼金属(锆、钽、钼、铌等)和异钟金属的焊接。焊接厚度一般在6毫米以下的焊件,或厚件的打底焊。
6、等离子弧焊
原理——借助水冷喷嘴对电弧的拘束作用,获得高能量密度的 等离子弧进行焊接的方法。
主要特点(与氩弧焊比)——(1)能量集中、温度高,对大多数金属在一定厚度范围内都能获得小孔效应,可以得到充分熔透、反面成形均匀的焊缝。(2)电弧挺度好,等离子弧基本是圆柱形,弧长变化对焊件上的加热面积和电流密度影响比较小。所以,等离子弧焊的弧长变化对焊缝成形的影响不明显。(3)焊接速度比氩弧焊快。(4)能够焊接更细、更薄加工件。(4)设备复杂,费用较高。
应用——
(1)穿透型(小孔型)等离子弧焊:利用等离子弧直径小、温度高、能量密度大、穿透力强的特点,在适当的工艺参数条件下(较大的焊接电流100A~500A),将焊件完全熔透,并在等离子流力作用下,形成一个穿透焊件的小孔,并从焊件的背面喷出部分等离子弧的等离子弧焊接方法。可单面焊双面成形,最适于焊接3~8毫米不锈钢,12毫米以下钛合金,2~6毫米低碳钢或低合金结构钢以及铜、黄铜、镍及镍合金的对接焊。(板太厚,受等离子弧能量密度的限制,形成小孔困难;板太薄,小孔不能被液态金属完全封闭,固不能实现小孔焊接法。)
(2)熔透型(溶入型)等离子弧焊:采用较小的焊接电流(30A~100A)和较低的等离子气体流量,采用混合型等离子弧焊接的方法。不形成小孔效应。主要用于薄板(0.5~2.5毫米以下)的焊接、多层焊封底焊道以后各层的焊接及角焊缝的焊接。
(3)微束等离子弧:焊接电流在30A以下的等离子弧焊。喷嘴直径很小(Φ0.5~Φ1.5毫米),得到针状细小的等离子弧。主要用于焊接1毫米以下的超薄、超小、精密的焊件。
注:
1、以上是常用的几种熔焊方法,各有优点和不足,选择焊接方法时,要考虑的因素比较多,如:焊件材料的种类、板厚、焊缝在空间的位置等。选焊接方法的原则是:在保证焊接接头质量的前提下,用总成本低的焊接方法。
2、推荐一本书:高职高专规划教材《焊接方法与设备》,机械工业出版社,雷世明主编。内容较全但不难。
Ⅵ 什么是焊接
焊接是一种以加热、高温或者高压的方式接合金属或其他热塑性材料如塑料的制造工艺及技术。
焊接通过下列三种途径达成接合的目的:
1、熔焊——加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助,它是适合各种金属和合金的焊接加工,不需压力。
2、压焊——焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。
3、钎焊——采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。
(6)焊接时不管是什么材料其焊接能量越大越好扩展阅读:
焊接的分类:
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类。
在熔焊的过程中,如果大气与高温的熔池直接接触的话,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;
又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
各种压焊方法的共同特点,是在焊接过程中施加压力,而不加填充材料。多数压焊方法,如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有像熔焊那样的,有益合金元素烧损和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。
同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
焊接时形成的,连接两个被连接体的接缝称为焊缝。焊缝的两侧在焊接时,会受到焊接热作用,而发生了组织和性能变化,这一区域被称作为热影响区。
焊接时因工件材料焊接材料、焊接电流等方面的不同。恶化焊接性这就需要调整焊接的条件,焊前对焊件接口处的预热、焊时保温和焊后热处理,可以改善焊件的焊接质量。
另外,焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
现代焊接技术已能焊出无内外缺陷的、机械性能等于甚至高于被连接体的焊缝。被焊接体在空间的相互位置称为焊接接头,接头处的强度除受焊缝质量影响外,还与其几何形状、尺寸、受力情况和工作条件等有关。接头的基本形式有对接、搭接、丁字接(正交接)和角接等。
对接接头焊缝的横截面形状,决定于被焊接体在焊接前的厚度和两接边的坡口形式。焊接较厚的钢板时,为了焊透而在接边处开出各种形状的坡口,以便较容易地送入焊条或焊丝。
坡口形式有单面施焊的坡口和两面施焊的坡口。选择坡口形式时,除保证焊透外还应考虑施焊方便,填充金属量少,焊接变形小和坡口加工费用低等因素。
厚度不同的两块钢板对接时,为避免截面急剧变化引起严重的应力集中,常把较厚的板边逐渐削薄,达到两接边处等厚。
对接接头的静强度和疲劳强度比其他接头高。在交变、冲击载荷下或在低温高压容器中工作的联接,常优先采用对接接头的焊接。
搭接接头的焊前准备工作简单,装配方便,焊接变形和残余应力较小,因而在工地安装接头和不重要的结构上时常采用。一般来说,搭接接头不适于在交变载荷、腐蚀介质、高温或低温等条件下工作。
采用丁字接头和角接头通常是由于结构上的需要。丁字接头上未焊透的角焊缝工作特点与搭接接头的角焊缝相似。
当焊缝与外力方向垂直时便成为正面角焊缝,这时焊缝表面形状会引起不同程度的应力集中;焊透的角焊缝受力情况与对接接头相似。
角接头承载能力低,一般不单独使用,只有在焊透时,或在内外均有角焊缝时才有所改善,多用于封闭形结构的拐角处。
焊接产品比铆接件、铸件和锻件重量轻,对于交通运输工具来说可以减轻自重,节约能量。焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。
采用焊接工艺能有效利用材料,焊接结构可以在不同部位采用不同性能的材料,充分发挥各种材料的特长,达到经济、优质。焊接已成为现代工业中一种不可缺少,而且日益重要的加工工艺方法。
在近代的金属加工中,焊接比铸造、锻压工艺发展较晚,但发展速度很快。焊接结构的重量约占钢材产量的45%,铝和铝合金焊接结构的比重也不断增加。
未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源;运用电子技术和控制技术,改善电弧的工艺性能,研制可靠轻巧的电弧跟踪方法。
另一方面要提高焊接机械化和自动化水平,如焊机实现程序控制、数字控制;研制从准备工序、焊接到质量监控全部过程自动化的专用焊机;在自动焊接生产线上,推广、扩大数控的焊接机械手和焊接机器人,可以提高焊接生产水平,改善焊接卫生安全条件。
Ⅶ 焊接考试问题
1答:焊件在焊接过程中由受热到冷却会产生变形。
6答:搭接。
2答:焊件表面光滑,注意角度.顺序。
Ⅷ 什么叫焊接速度其作用如何
单位时间内完来成的单道焊缝长度源称为焊接速度。焊接的速度取决于焊接电流的大小。焊接电流大,可提高焊接速度,但不要误认为焊接生产效率的高低取决于焊接速度;不是焊接速度越高,焊接生产效率就越高,而是焊接电流大小决定焊接生产效率的高低。焊接电流越大,单位时间内熔化金属量越多,则焊接生产效率越高。在一定焊接电流下,焊接速度的大小影响着焊道厚度。焊接速度大则焊道薄,焊接速度小则焊道厚。 焊接速度可由电焊工根据具体情况灵活掌握,原则是:保证焊缝具有所要求的外形尺寸,保证焙合良好。焊接那些对焊接线能量有严格要求的材料时,焊接速度要按工艺文件规定掌握。在焊接过程中,焊工应随时调整焊接速度,以保证焊缝的高低和宽窄的一致性。如果焊接速度太小,则焊缝会过高或过宽,外形不整齐,焊接薄板时甚至会烧穿;如果焊接速度太大,焊缝较窄,则会发生未焊透的缺陷。
Ⅸ 关于大线能量焊接的问题请问大线能量焊接有何意义
线能量包括的很多,如焊条直径,焊接电流,焊接数度等等,确切的说提高线能量就等于提高了工作效率,至于线能量的大小要因个人技能来决定。小线能量焊厚钢板不会出现焊不透,大线能量焊接薄钢板肯定要比小线能量更容易烧穿,操作者可以控制焊接速度,与钢板有关,厚的用线能量大点。薄的就小点,这样可以提高工作效率。
Ⅹ 焊接的概念及焊接机理是什么
1焊接的概念
焊接,就是用加热的方式使两件金属物体结合起来。如果在焊接的过程中需要熔入第三种物质,则称之为“钎焊”,所熔入的第三种物质称为“焊料”。按焊料熔点的高低不同又将钎焊分为“硬钎焊”和“软钎焊”,通常以450℃为界,低于450℃的称为“软钎焊”。电子产品安装的所谓“焊接”就是软钎焊的一种,主要是用锡、铅等低熔点合金作焊料,因此俗称“锡焊”。
2锡焊的机理
从物理学的角度来看,任何焊接都是一个“扩散”的过程,是一个在高温下两个或两个以上物体表面分子相互渗透的过程。锡焊,就是让熔化的焊料渗透到两个被焊物体(比如元器件引脚与印刷电路板焊盘)的金属表面分子中,然后冷凝而使之结合。
锡焊的机理可以由以下三个过程来表述。
1)浸润
加热后呈熔融状态的焊料(锡铅合金),沿着工件金属的凹凸表面,靠毛细管的作用扩展。如果焊料和工件金属表面足够清洁,焊料原子与工件金属原子就可以接近到能够相互结合的距离,即接近原子引力相互作用的距离,上述过程称为焊料的浸润。
2)扩散
由于金属原子在晶格点阵中呈热振动状态,所以在温度升高时,它会从一个晶格点阵自动地转移到其他晶格点阵,这种现象称为扩散。锡焊时,焊料和工件金属表面的温度较高,焊料与工件金属表面的原子相互扩散,在两者界面形成新的合金。
3)界面层结晶与凝固
焊件或焊点降温到室温,在焊接处形成由焊料层和工件金属表面层组成的结合结构,成为“界面层”或“合金层”。冷却时,界面层首先以适当的合金状态开始凝固,形成金属结晶,而后结晶向未凝固的焊料扩展,最终形成固体焊点。
3锡焊的条件
1)被焊金属材料必须具有可焊性
可焊性可浸润性,它是指被焊接的金属材料与焊锡在适当的温度和助焊剂作用下形成良好结合的性能。在金属材料中,金、银、铜的可焊性较好,其中铜应用最广,铁、镍次之,铝的可焊性最差。为了便于焊接,常在较难焊接的金属材料和合金表面镀上可焊性较好的金属材料,如锡铅合金、金、银等。
2)被焊金属表面应洁净
金属表面的氧化物和粉尘、油污等会妨碍焊料浸润被焊金属表面。在焊接前可用机械方法(用小刀或砂纸刮引线的表面)或化学方法(酒精等)清除这些杂质。
3)正确选用助焊剂
助焊剂的种类繁多,效果也不一样,使用时必须根据被焊件材料的性质、表面状况和焊接方法来选取。助焊剂的用量越大,助焊效果越好,可焊性越强,但助焊剂残渣也越多。助焊剂残渣不仅会腐蚀元器件,而且会使产品的绝缘性能变差,因此在锡焊完成后应进行清洗除渣。
4)正确选用焊料
锡焊工艺中使用的焊料是锡铅合金,电子产品的装配和维修中要用共晶合金。
5)控制好焊接温度和时间
热能是进行焊接必不可少的条件。热能的作用是熔化焊料,提高工件金属的温度,加速原子运动,使焊料浸润工件金属界面,扩散到金属界面晶格中去,形成合金层。温度过低,则达不到上述要求而难于焊接,造成虚焊。提高锡焊的温度虽然可以提高锡焊的速度,但温度过高会使焊料处于非共晶状态,加速助焊剂的分解,使焊料性能下降,还会导致印刷电路板上的焊盘脱落,甚至损坏电子元器件。合适的温度是保证焊点质量的重要因素。在手工焊接时,控制温度的关键是选用具有适当功率的电烙铁和掌握焊接时间。根据焊接面积的大小,经过反复多次实践才能把握好焊接工艺的这两个要素。焊接时间过短,会使温度太低,焊接时间过长,会使温度太高。一般情况下,焊接时间应不超过5s。
4锡焊的质量要求
电子产品的组装其主要任务是在印刷电路板上对电子元器件进行锡焊。焊点的个数从几十个到成千上万个,如果有一个焊点达不到要求,就要影响整机的质量,因此在锡焊时,必须做到以下几点
1)电气性能良好
高质量的焊点应是焊料与工件金属界面形成牢固的合金层,才能保证导电性能。不能简单地将焊料堆附在工件金属表面而形成虚焊,这是焊接工艺中的大忌。
2)焊点要有足够的机械强度
焊点的作用是连接两个或两个以上的元器件,并使电气接触良好。电子设备有时要工作在振动的环境中,为使焊件不松动或脱落,焊点必须具有一定的机械强度。锡铅焊料中的锡和铅的强度都比较低,有时在焊接较大和较重的元器件时,为了增加强度,可根据需要增加焊接面积,或将元器件引线、导线元件先行网绕、绞合、钩接在接点上再行焊接。
3)焊点上的焊料要适量
焊点上焊料过少,不仅降低机械强度,而且由于表面氧化层逐渐加深,会导致焊点早期失效。焊点上焊料过多,既增加成本,又容易造成焊点桥连(短路),也会掩盖焊接缺陷,所以焊点上的焊料要适量。印刷电路板焊接时,焊料布满焊盘呈裙状展开时最合适,如图3-7所示。
图3-7典型焊点的外观
1—焊锡丝;2—电烙铁;3—焊点剖面呈“双曲线”;4—平滑过渡;5—半弓形凹下;6—元器件引线;7—铜箔;8—基板
4)焊点表面应光亮均匀
良好的焊点表面应光亮且色泽均匀。这主要是助焊剂中未完全挥发的树脂成分形成的薄膜覆盖在焊点表面,能防止焊点表面氧化。
5)焊点不应该有毛刺、空隙
焊点表面存在毛刺、空隙不仅不美观,还会给电子产品带来危害,尤其在高压电路部分,将会产生尖端放电而损坏电子设备。
6)焊点表面必须清洁
焊点表面的污垢、尤其是助焊剂的有害残留物质,如果不及时清除,酸性物质会腐蚀元器件引线、接点及印刷电路,吸潮会造成漏电甚至短路燃烧等而带来严重隐患。