焊接有哪些复合热源
A. 焊接热源有哪几种模型
内热型------高频焊,磨擦焊等
外热型------电弧焊,火焰焊等
B. 焊接热源有哪些共同要求描述焊接热源主要用什么指标
焊接热源模型种类及其参数在焊接尤其是熔化焊中,其热过程贯穿整个焊接过程的始终内,一切熔化焊的物理化学过程容都是在热过程中发生和发展的。焊接温度场不仅决定焊接应力场和应变场,还与冶金、结晶及相变过程有着紧密的联系。焊接温度场内包含着焊接接头质量及性能的充分信息, 始终是焊接发展中的最基本课题之一。
按照热源作用方式的不同,可以将焊接热源当作集中热源、平面分布热源、体积分布热源来处理。当关心的工件部位离焊缝中心线比较远时,可以近似将焊接热源当作集中热源来处理。对于一般的电弧焊,焊接电弧的热流是分布在焊件上一定的作用面积内,可以将其作为平面分布热源。但对于高能束焊接,由于产生较大的焊缝深宽比,说明焊接热源的热流沿工件厚度方向施加很大的影响,必须按某种恰当的体积分布热源来处理。
C. 焊接热源主要有哪些各有什么特点
一、焊接热源模型种类及其参数
在焊接尤其是熔化焊中
,
其热过程贯穿整个焊接过程的始终内
,
一切熔化焊的容
物理化学过程都是在热过程中发生和发展的。
焊接温度场不仅决定焊接应力场和
应变场
,
还与冶金、结晶及相变过程有着紧密的联系。焊接温度场内包含着焊接
接头质量及性能的充分信息
,
始终是焊接发展中的最基本课题之一。
按照热源作
用方式的不同,
可以将焊接热源当作集中热源、
平面分布热源、
体积分布热源来
处理。
当关心的工件部位离焊缝中心线比较远时,
可以近似将焊接热源当作集中
热源来处理。
对于一般的电弧焊,
焊接电弧的热流是分布在焊件上一定的作用面
积内,
可以将其作为平面分布热源。
但对于高能束焊接,
由于产生较大的焊缝深
宽比,
说明焊接热源的热流沿工件厚度方向施加很大的影响,
必须按某种恰当的
体积分布热源来处理。
D. 激光+gmaw电弧复合热源焊啥意思
激光电弧复合焊的一种
焊接时采用激光和常见的电弧两种焊接热源进行焊接
其中GMAW是指 gas metal arc welding ,熔化极气内体保容护焊;是一种电弧焊接方法,此方法利用在连续给送的填充金属(熔化极)和工件之间建立的电弧加热金属而进行焊接。电弧和熔融的熔池完全有外部供应的气体或气体混合物保护。包括MIG焊(惰性气体保护金属极电弧焊)、MAG焊(熔化极活性气体保护电弧焊)、CO2焊。一般也把CO2焊归类于MAG焊。
E. 什么焊接方法热源比较集中
氩弧焊周边有气体冷却,这种焊接方法热源比较集中。
F. 焊接热源是什么有哪些啊
一、焊接热源模型种类及其参数
在焊接尤其是熔化焊中
,
其热过程贯穿整个焊接过程的始终
,
一切回熔化焊的
物理化答学过程都是在热过程中发生和发展的。
焊接温度场不仅决定焊接应力场和
应变场
,
还与冶金、结晶及相变过程有着紧密的联系。焊接温度场内包含着焊接
接头质量及性能的充分信息
,
始终是焊接发展中的最基本课题之一。
按照热源作
用方式的不同,
可以将焊接热源当作集中热源、
平面分布热源、
体积分布热源来
处理。
当关心的工件部位离焊缝中心线比较远时,
可以近似将焊接热源当作集中
热源来处理。
对于一般的电弧焊,
焊接电弧的热流是分布在焊件上一定的作用面
积内,
可以将其作为平面分布热源。
但对于高能束焊接,
由于产生较大的焊缝深
宽比,
说明焊接热源的热流沿工件厚度方向施加很大的影响,
必须按某种恰当的
体积分布热源来处理。
G. 焊接分为哪三类各有何特点
焊接分类及特点如下:
1、钎焊:适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。
2、熔焊:适合各种金属和合金的焊接加工,不需压力。加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助。
3、压焊:焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。
(7)焊接有哪些复合热源扩展阅读:
1、焊接是一个局部的迅速加热和冷却过程,焊接区由于受到四周工件本体的拘束而不能自由膨胀和收缩,冷却后在焊件中便产生焊接应力和变形。重要产品焊后都需要消除焊接应力,矫正焊接变形。
2、焊接的密封性好,适于制造各类容器。发展联合加工工艺,使焊接与锻造、铸造相结合,可以制成大型、经济合理的铸焊结构和锻焊结构,经济效益很高。
3、熔池温度,直接影响焊接质量,熔池温度高、熔池较大、铁水流动性好,易于熔合,但过高时,铁水易下淌,单面焊双面成形的背面易烧穿,形成焊瘤,成形也难控制,且接头塑性下降,弯曲易开裂。
4、未来的焊接工艺,一方面要研制新的焊接方法、焊接设备和焊接材料,以进一步提高焊接质量和安全可靠性,如改进现有电弧、等离子弧、电子束、激光等焊接能源。
H. 有哪六种激光复合焊接
今天我们通发激光专门整理了一下,带大家了解一下六种激光复合焊接技术:
第一种。高频感应复合焊接技术:电磁感应是一种依赖于工件内部产生的涡流电阻热进行加热的方法,与激光一样属非接触性环保型加热,加热速度快,可实现加热区区域和深度的精确控制,特别适合于自动化材料加工过程,已在工业上得到了广泛的应用。
第二种。电弧复合焊接技术:电弧复合热源焊接方法早在20世纪80年代就由英国学者Steen提出,但自此以后很长时间内,科技工作者们并没有对其做更深一步的研究与发展。近年来,研究人员已经重新把注意力转移到这项技术上,并且尝试着结合激光与电弧的各自优点使两者获得最佳配合。
第三种。TIG复合焊接:激光与TIG复合焊接的特点是:1、利用电弧增强激光作用,可用小功率激光器代替大功率激光器焊接金属材料;2、在焊接薄件时可高速焊接;3、可增加熔深,改善焊缝成形,获得优质焊接接头;4、可以缓和母材端面接口精度要求。例如,当CO2激光功率为0.8KW,TIG电弧的电流为90A,焊接速度2m/min 时,可相当5KW的CO2激光焊机的焊接能力,5KW的CO2激光束与300A的TIG电弧复合,焊接速度0.5~5m/min 时,获得的熔深是单独使用5KW的CO2激光束焊接时的1.3~1.6倍。
第四种。等离子弧复合焊接:激光等离子复合采同轴方式,等离子弧由环状电极产生,激光束从等离子弧的中间穿过,等离子弧主要有两个功能:1、为激光焊接提供额外的能量,提高焊接速度,进而提高整个焊接过程的效率;2、等离子弧环绕在激光周围,可以产生热处理的效果,延长冷却时间,也就减少了硬化和残余应力的敏感性,改善了焊缝的微观组织性能。
第五种。MIG复合焊接:近年来的研究表明,激光-MIG复合热源焊接在中厚板焊接中拥有比较明显的优势。该焊接方法通过调节电弧与激光的相对位置,可有效地改善焊接适应性,提高对大间隙的适应性,改善焊缝成形,同时,输入的电弧能量能够调节冷却速度,进而改善微观组织。在激光与电弧相互作用下,焊接过程变得更加稳定,而且在增加熔深的同时提高焊接速度。焊接时,热输入相对较小,也就意味着焊后变形和焊接残余应力较小,这样可以减少焊接装夹、定位、焊后矫形处理等的时间。另外,这一方法的较突出的特点是自身能够比较稳定地填丝,从而比较容易改善焊缝冶金性能和微观组织结构。
第六种。双激光束焊接技术:在激光焊接过程中,由于激光功率密度大,焊接母材被迅速加热熔化、汽化,生成高温金属蒸汽。在高功率密度的激光的继续作用下,很容易生成等离子体云,不仅减小工件对激光的吸收,而且使焊接过程不稳定。如果在较大的深熔小孔形成后,减小继续照射的激光功率密度,而已经形成的较大深熔小孔对激光的吸收较多,结果激光对金属蒸汽的作用减小,等离子体云就能减小或消失。因而,用一束峰值功率较高的脉冲激光和一束连续激光,或者两束脉冲宽度、重复频率和峰值功率有较大差异的脉冲激光对工件进行复合焊接,在焊接过程中,两束激光共同照射工件,周期地形成较大深熔小孔,后适时停止一束激光的照射,可使等离子体云很小或消失,改善工件对激光能量的吸收与利用,加大焊接熔深,提高焊接能力。
I. 归纳各种常见焊接热源的主要特征
1) 手工焊条电弧焊接:工作原理:手工电弧焊由焊接电源、焊接电缆、焊钳、焊条、焊件、电弧构成回路,焊接时电弧在焊条与被焊件之间燃烧, 电弧热使工件和焊条同时熔化成熔池,焊条的药皮熔化或燃烧, 产生渣气,保护熔池;当电弧向前移动时, 熔池冷却凝固而新的熔池不断产生, 形成连续的焊缝。优点:设备简单,操作灵活,适应性强。缺点:生产效率低,劳动强度大,对焊工要求高。
2)手工钨极氩弧焊:工作原理:以非熔化极(钨极)作为电极,工件作为另一个电极,电弧在非熔化极和工件之间燃烧,使焊材及母材熔化成液态形成熔池,同时外加惰性气体作为电弧介质并保护电弧及焊接区的一种焊接方法。优点:氩气保护,可焊接易氧化、氮化、化学活泼性强的有色金属、不锈钢和各种合金;钨极电弧稳定,可焊接薄件;焊缝成分可控,无飞溅,成形美观。
3)埋弧自动焊:工作原理:焊接动作由机械装置自动完成,电弧在颗粒状焊剂层下燃烧,连续送进的焊丝在焊剂覆盖下和母材、焊剂一起熔化,形成焊缝的一种方法。优点:生产效率高,焊缝质量稳定,节能,劳动条件好。缺点:无法进行立焊、横焊或仰焊;灵活性较差,无法焊接不规则焊缝。
4)熔化极气保焊工作原理:熔化极气体保护焊采用可熔化的焊丝与被焊工件之间的电弧作为热源来熔化焊丝与母材金属,并向焊接区输送保护气体,使电弧、熔化的焊丝、熔池及附近的母材金属免受周围空气的有害作用。连续送进的焊丝金属不断熔化并过渡到熔池,与熔化的母材金属融合形成焊缝金属,从而使工件相互连接起来。优点:流密度大,热量集中,熔敷率高,焊接速度快。熔深大,适用焊接较厚的焊件;可获得低氢含量的焊缝。
5)气焊氧乙炔火焰气:工作原理:焊接熔池是由火焰加热所形成,火焰是由可燃气体与氧气的化学反应产生的,火焰的热量使材料熔化。 通常用手将焊丝送入熔化区,把焊接坡口填满。 火焰气体覆盖着熔池,并保护熔池免受空气的影响。应用范围:主要用于非合金、低合金钢板和管材的焊接(也可用于铸铁的焊接)、管道工程、车体结构、安装和维修等焊接。
J. 焊条电弧焊融化焊条的主要热源有哪几种
焊条熔化主要依靠电弧热。焊接电弧就是利用焊接中电弧放电时产生的热量来加热,熔化焊条(焊丝)和母材,使之形成焊接接头。