当前位置:首页 » 焊接工艺 » 焊接模拟是干什么的

焊接模拟是干什么的

发布时间: 2021-01-21 14:02:06

1. ANSYS模拟焊接过程的求助

1、前处理
前处理包括单元定义、材料定义和建模,单元定义是需要注意单元属性,此次定义13号二维耦合单元,具有温度和位移自由度。
材料属性包括结构参数和热参数,具体包含弹性模量,泊松比,屈服强度,塑性属性,材料密度,热膨胀系数,热传导系数,比热容。焊接时温度较高,定义材料通常需要定义多个温度下的值。例如定义各材料在各温度点下的屈服应力和屈服后的弹性模量:
tb,bkin,1,5
tbtemp,20,1
tbdata,1,1200e6,0.193e11
tbtemp,500,2
tbdata,1, 933e6,0.150e11
tbtemp,1000,3
tbdata,1, 435e6,0.070e11
tbtemp,1500,4
tbdata,1, 70e6,0.010e11
tbtemp,2000,5
tbdata,1, 7e6,0.001e11
建立的二维模型,中间三角区域为焊接区域。

2、单元排序

焊接区域的单元排序是一个必要的过程,只有将单元按照坐标顺序排列好,激活才好控制。
由于焊接时单元是从底部一层一层铺,因此需要将三角区域的单元按照Y坐标排序。单元的坐标是其形心处的坐标,如果一层的单元Y坐标一致,则将这一层再按照X坐标排序。
排序用ANSYS的APDL实现,通过Do循环一遍一遍的遍历单元。

在进行这个过程之前,需要先选出焊接区域的所有单元,之后:
*get,nse,elem,,count !焊接区域单元数目nse
*dim,ne,,nse !定义数组,存储单元编号
*dim,nex,,nse !定义数组,存储坐标x
*dim,ney,,nse !定义数组,存储坐标y
*dim,neorder,,nse !定义数组,存储按照坐标排序的单元标号
mine=0
!**************************************************************
*do,i1,1,nse
esel,u,elem,,mine !提出排序了的单元
*get,nse1,elem,,count !得到剩下的单元数目nse1
ii=0
*do,i,1,emax
*if,esel(i),eq,1,then !表示单元是否被选中
ii=ii+1
ne(ii)=i
*endif
*enddo !此段循环用于得到剩下的单元的编号
*do,i,1,nse1
*get,ney(i),elem,ne(i),cent,y
*get,nex(i),elem,ne(i),cent,x
*enddo !此段循环得到剩下单元的坐标
miny=1e20
minx=1e20 !定义辅助常数,用于比较
*do,i,1,nse1
*if,ney(i),lt,miny,then
miny=ney(i)
minx=nex(i)
mine=ne(i)
*else
*if,ney(i),eq,miny,then
*if,nex(i),lt,minx,then
miny=ney(i)
minx=nex(i)
mine=ne(i)
*endif
*endif
*endif
*enddo !此段循环用于将剩下的单元经过坐标比较,找到Y最小(X最小的单元编号)
neorder(i1)=mine !得到这个编号的单元并存储
*enddo
注意循环的时候会有警告,这个没有关系,因为第一步剔除单元操作时实际并没有剔除成功,因为第一步循环时mine=0。

4 加载求解
温度载荷,结构约束,无需多说。
焊接一个单元的时间假设为5s,起始时间为0,通过得到的单元数可以知道整个历程的时间。
求解之前先将所有焊接区域的单元杀死,通过循环遍历实现,命令是ekill,每次杀死一个单元:
*do,i,1,nse
ekill,neorder(i)
esel,s,live
eplot
*enddo

求解过程的APDL为:
*do,i,1,nse
ealive,neorder(i)
esel,s,live
eplot
esel,all
!******下面的求解用于建立温度的初始条件******
t=t+dt1
time,t
nsubst,1
*do,j,1,4
d,nelem(neorder(i),j),temp,max_tem
*enddo
solve
!****下面的求解用于保证初始的升温速度为零****
t=t+dt1
time,t
solve
!*********下面的步骤用于求解温度分布**********
*do,j,1,4
ddele,nelem(neorder(i),j),temp
*enddo
t=t+dt-2*dt1
time,t
nsubst,nsub1
solve
*enddo
t=t+50000
求解完之后,继续求解冷却过程,冷却过程只需给一个时间就行。
5 计算结果
最后的应力分布如图6,因为在左端施加位移约束,最后由于焊接变形,右边发生翘曲。

2. 现需要用ANSYS模拟零件焊接过程,如何入手

这个要看ansys结构分析以及热学分析的东西,然后主要是热应力的分析,难点是网格的建立与热源的建立,学习方法看帮助文档,教材中文的随便什么结构,热学的书都可以,其次是软件自带的英文帮助文档

3. 做焊接模拟,什么软件好

看模拟对象是什么了,一般温度和应力模拟Ansys和Marc用的比较多

4. 模拟焊后热处理的目的

焊前预热和后热是为了降低焊缝的冷却速度,防止接头生成淬硬组织,产回生冷裂纹答。焊前预热温度一般在100-200度,
后热不属于热处理,也是一种缓冷措施,后热的温度在200-300度,有的单纯是为了缓冷,有的是针对消氢处理的,一定的后热温度,能使焊缝中氢扩散出来,不至于集聚导致裂纹。后热保温时间要根据工件厚度来确定,一般不会低于0.5小时的。
焊后热处理的就多了,主要分为四种:
1低于下转变温度进行的焊后热处理,如消除应力退火,温度一般在600-700之间,主要目的是消除焊接残余应力,
2高于上转变温度进行的焊后热处理,如正火,温度在950-1150之间,细化晶粒,改善材料的力学性能,再如不锈钢的固熔、稳定化处理,温度在1050左右,提高不锈钢的耐蚀性能。尤其是抗晶间腐蚀的能力。再如淬火,不同的淬火工艺能得到不同的效果,提高钢的耐磨性,硬度等。
3先高于上转变温度进行处理再进行低于下转变温度下的热处理。比如正火加回火,淬火加回火等。
4在上下转变温度之间进行的焊后热处理。750-900之间,一些材料的实效强化重结晶退火等。
想详细的了解,建议找些书看看。不好讲的太详细。
错误之处,大家多多批评!谢谢!

5. 高分求助abaqus焊接模拟方面教程

类似的教程很多,但是绝大多数都是英文。需要你有一定的英文基础。
下面是一个简单的例子,你可以先练习试试看。

1.3.18 Inertia welding simulation using Abaqus/Standard and Abaqus/CAE
Procts: Abaqus/Standard Abaqus/CAE
Objectives
This example demonstrates the following Abaqus features:thermal-mechanical coupling for inertia welding simulation,semi-automatic remeshing using Python scripting and output database scripting methods for extracting deformed configurations,defining a complex friction law in a user subroutine,flywheel loading through user subroutine definitions, andcombining and presenting results from a sequence of output database (.odb) files.
Application description
This example examines the inertia friction welding process of the pipes shown in Figure 1.3.18–1. The specific arrangement considered is the resulting as-welded configuration shown in Figure 1.3.18–2.
In this weld process kinetic energy is converted rapidly to thermal
energy at a frictional interface. The resulting rapid rise in interface
temperature is exploited to proce high-quality welds. In this example
the weld process is simulated, and the initial temperature rise and
material plastic flow are observed. An important factor in the process
design is control of the initial speed of the flywheel so that, when the
flywheel stops, the temperature rises to just below the melting point,
which in turn results in significant flow of material in the region of
the weld joint. Understanding the friction, material properties, and
heat transfer environment are important design aspects in an effective
inertia welding process; therefore, simulation is a helpful tool in the
process design.Geometry
The weld process in this example is shown in Figure 1.3.18–1,
where two pipes are positioned for girth-weld joining. The two pipes
are identical, each with a length of 21.0 mm, an inside radius of
42.0 mm, and an outside radius of 48.0 mm. The pipes are adjacent,
touching each other initially at the intended weld interface.Materials
The pipes are made of Astroloy, a high-strength alloy used in gas turbine components. Figure 1.3.18–3
shows flow stress curves as a function of temperature and plastic
strain rate. At temperatures relevant to the welding process, the
material is highly sensitive to plastic strain rate and temperature.
Specific heat is a function of temperature, as shown in Figure 1.3.18–4.Other material properties are defined as follows:Young's molus:180,000 MPaPoisson's ratio:0.3Density:7.8 × 10–9 Mg/mm3Conctivity:14.7 W/m/C at 20C 28 W/m/C at 1200C
Initial conditions
The pipes are initially set at 20°C, representing room temperature. Boundary conditions and loading
A
pressure of 360 MPa is applied to the top surface of the upper pipe.
The initial rotational velocity of the flywheel is set at 48.17 rad/s,
or 7.7 revolutions per second. The mass moment of inertia of the
flywheel is 102,000 Mg mm2. Interactions
The
principal interaction occurs at the weld interface between the pipes;
however, a secondary concern is the possibility of contact of weld flash
with the side of the pipes. The weld-interface friction behavior is
assumed to follow that described by Moal and Massoni (1995), where the
ratio of shear stress to the prescribed pressure is observed to be a
complex function of interface slip rate. The heat generation from the
frictional sliding, combined with plastic deformation, contributes to
the temperature rise in the pipes.
Abaqus modeling approaches and simulation techniques
Abaqus/CAE
and Abaqus/Standard are used together to affect the weld simulation in a
way that permits extreme deformation of the pipes in the weld region.
This process is automated through the use of Python scripts. Three cases
are studied in this example.Summary of analysis casesCase 1Initial flywheel velocity = 48.17 rad/s. This case proces a successful weld.Case 2Initial
flywheel velocity = 20.0 rad/s. This case illustrates an unsuccessful
weld scenario; the flywheel has insufficient energy to begin the weld
process.Case 3Initial flywheel velocity =
70.0 rad/s. This case illustrates an unsuccessful weld scenario; the
flywheel has excessive energy, resulting in a temperature rise into the
liquis regime of the pipe material.The
following sections discuss analysis considerations that are applicable
to all the cases. Python scripts that generate the model databases and
Abaqus/Standard input files are provided for Case 1, with instructions
in the scripts for executing the Case 2 and Case 3 simulations.Analysis types
The
analysis is nonlinear, quasi-static with thermal-mechanical coupling. A
fully coupled temperature-displacement procere is used.Analysis techniques
The
key feature required for successful simulation of this process is
remeshing. In this example, because of the large deformation near the
weld region, multiple analyses are employed to limit element distortion.
These analyses are executed in sequence, with remeshing performed
between executions, and are automated through the use of Python scripts.
At each remesh point the current model configuration represents a
significant change in the pipes' shape and in the current analysis
mesh. Abaqus/CAE is used to extract the outer surface of the pipes,
reseed the surface, and remesh the pipe regions. This process employs
the Abaqus Scripting Interface PartFromOdb command, which is used to extract orphan mesh parts representing the deformed pipes. These parts are then passed to the Part2DGeomFrom2DMesh command. This command creates a geometric Part
object from the orphan mesh imported earlier. Once the profile of the
deformed part has been created, options in the Mesh mole are used to
remesh the part. The new mesh results in a new Abaqus/Standard analysis,
and the map solution procere maps state variables from the previous
analysis (see “Mesh-to-mesh solution mapping,” Section 12.4.1 of the Abaqus Analysis User's Manual).Mesh design
The
pipes are modeled as axisymmetric. The element formulation used is the
fully coupled temperature-displacement axisymmetric elements with twist
degrees of freedom (element types CGAX4HT and CGAX3HT), where the twist
degree of freedom enables modeling of rotation and shear deformation in
the out-of-plane direction. The hybrid formulation is required to handle
the incompressible nature of the material ring the plastic flow. The
mesh is divided into two regions for each pipe. In the region near the
weld interface, smaller elements are created (see Figure 1.3.18–5).
During the remeshing process, the region near the weld surface is
recalculated so that the new flash region is also meshed with smaller
elements (see Figure 1.3.18–6).Material model
The
material model defined for this example approximates the
high-temperature behavior of Astroloy, where it is reported by Soucail
et al. (1992) using a Norton-Hoff constitutive law to describe the
temperature and strain-rate viscoplastic behavior. A similar model is
defined in Abaqus as a rate-dependent perfectly plastic material model.
For the loading in this model, these material parameters result in the
onset of local plastic flow only after the interface temperature has
exceeded roughly 1200C, near the material solis temperature of
1250C. Above this temperature the Mises flow stress is highly sensitive
to variations in temperature and strain rate. A special adjustment in
the flow stress at high strain rates is necessary to avoid divergence
ring the iteration procere of the nonlinear solution. In the
material model definition an extreme case of stress data is defined when
the strain rate is 1.0 × 106 s–1. Stress data when the strain rate equals zero are also defined to be the same as the stress data at strain rate 1.0 × 10–5 s–1. As a result of large deformation, thermal expansion is not considered in the material model. It
is assumed that 90% of the inelastic deformation energy contributes to
the internal heat generation, which is the Abaqus default for inelastic
heat fraction.Initial conditions

6. 做焊接模拟动画的是什么软件

或sysweld软件火Proe

7. 焊接热模拟主要哪个方向

焊接热模拟主要是模拟焊接传热过程中的温度(场)分布,用以研究在采用不同焊接热源的条件下,温度的变化对焊接过程的影响。

8. ansys焊接模拟分析一般用什么单元类型

看你模拟什么焊接 如果是点焊的话 一般用二维模型就可以了 单元内类型有很多种的 有的是适合容二维的 有的适合三维的 模拟激光焊深熔焊时 需考虑厚度方向的热传导 这时你就必须采用三维单元 如solid45/70单元

9. 做焊接模拟一般用什么软件

安思ANSYS,和SYWELD等

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506