当前位置:首页 » 焊接工艺 » 铝和镁如何进行焊接

铝和镁如何进行焊接

发布时间: 2021-02-02 00:41:19

1. 铝板如何焊接,具体方法,

采用高频钎焊机来焊接。

反复用砂纸将铝板刮出线条的制造过程,其工艺主要流专程分属为脱酯、沙磨机、水洗3个部分。在铝板拉丝制程中,阳极处理之后的特殊的皮膜技术,可以使铝板表面生成一种含有该金属成分的皮膜层,清晰显现每一根细微丝痕,从而使金属哑光中泛出细密的发丝光泽。

将铝板置于相应电解液(如硫酸、铬酸、草酸等)中作为阳极,在特定条件和外加电流作用下,进行电解而形成的铝板。阳极的铝板氧化,表面上形成氧化铝薄层,其厚度为5~20微米 ,硬质阳极氧化膜可达60~200微米 。

(1)铝和镁如何进行焊接扩展阅读

焊接通过下列三种途径达成接合的目的:

1、熔焊——加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助,它是适合各种金属和合金的焊接加工,不需压力。

2、压焊——焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。

3、钎焊——采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。

参考自来来源:网络-焊接

2. 镁板与铝板焊接方法

镁板和铝板的异种焊接焊接无法焊接,这个威欧丁焊接做过很多这个相回关测试实验。
单独的镁板答和铝板都可以采用交流氩弧焊焊接,或者双脉冲气体保护焊机焊接均可,只是焊接材料的选择有别,镁合金会采用威欧丁WEWELDING33M的焊丝焊接,而铝合金会采用ER4043或者5356的焊丝焊接,都是采用高纯度氩气保护焊接。

3. 铝镁合金怎么焊接

铝镁合金的焊接采用无焊剂无焊粉用的实心铝钎焊可以很好的解决,材料选用WE53,你在网络搜索关键词WE53就有相关的介绍。非常适合新手操作。

4. 铝镁及其合金的焊接方法是什么方法

氩弧焊,包括TIG焊和MIG焊。

5. 铝和铜怎么焊接、铝和铝怎么焊接

铝和铜焊接主流的焊接方式有如下几种:
1、威欧丁ALCU-Q303铜铝焊条解决铜铝焊接
说明:一种自钎氟化物药剂的铜铝焊丝,在焊接的过程中,因为不需要使用任何的焊粉和焊剂比较受操作者的青睐,在母材的温度达400度的情况下,用火焰的末端稍微燎一下焊丝,熔融的焊丝就会在药粉的作用下水一般地流动。因为其非常好的流动性,在制冷行业使用得尤其多,比如铜铝管的套接,铝管与铝管的套接。另外在变压器行业的铜铝导排的搭接,角接也应用得特别多,如何让连接的导电排能够在高压和高电流的环境下工作,焊层的致密性尤为重要。
2、低温 WEWELDINGM51+M51-F低温铜铝焊条,179度温度下解决低温铜铝焊接。
说明:属于低温钎焊铜铝焊接,对于特别薄,甚至有一些夸张的薄的情况下,运用这种焊接时最合适不过了
铝和铝焊接方式主流的如下几种:
1、低温179度的WEWELDING M51焊丝配合M51-F的助焊剂焊接,焊接方法是加热母体然后用焊丝沾助焊剂涂于焊接部位完全靠母体热传导熔化沾有助焊剂的焊丝成型。
2、低温385度的WEWELDING53,这种是不挑剔铝合金材质的,任何的铝基的材质都可以属于低温钎焊,同时也可以用于氩弧熔焊,配合53专用的不锈钢根部刷焊接,加热母体然后用焊丝划母体,完全靠母体热传导熔化焊丝像蜡烛化到红的铁上的效果以后,用根部刷子刷拭划上去的焊层,然后再划一遍焊丝,冷却成型。
3、低温430度的药芯威欧丁303低温铝焊丝,加热母体,焊丝大角度点焊焊接部位,火焰尖端稍微撩一下焊丝尖端成型。
4、铝氩弧焊机焊接,如果是220V的电就用威欧丁WSE200或者WSME250的焊机焊接,如果是380V的电就 用威欧丁WSME400B或者用WSME500。

6. 铝镁焊接的方法与技巧

你好,
焊条电弧焊,电弧比较稳定,焊接熔池受到熔渣保护,焊接质量得内到提高,使手工电弧容焊进入实用阶段,电弧焊从20年代起成为一种重要的焊接方法。也成为现代焊接工艺的发展开端。在此期间,美国的诺布尔利用电弧电压控制焊条送给速度,制成自动电弧焊机,从而成为焊接机械化、自动化的开端。1930年美国的罗宾诺夫发明使用焊丝和焊剂的埋弧焊,焊接机械化得到进一步发展。40年代,为适应铝、镁合金和合金钢焊接的需要,钨极和熔化极惰性气体保护焊相继问世。
1951年苏联的巴顿电焊研究所创造电渣焊,成为大厚度工件的高

7. 镁铝合金如何和钢结构焊接

镁铝合金和钢结构是没办法焊接的。
只能用螺栓连接或者拉铆连接。

8. 铝怎么焊接

(1)要求火焰能率高 铝和铝合金的热导率、比热容都很大,因此要求大功率和能量集中的热源。因此气焊的火焰能率要大,有时需要对焊件进行预热来满足工艺要求。
(2)氧化能力强 氧与铝的亲和力大,其al2o3膜致密结实,厚度约0.1μm,密度为铝的1.4倍,熔点为2050℃。焊接时氧化膜包覆着熔滴及熔化金属,阻碍填充金属与母材的熔合,易造成未熔合、夹渣和成形不良。同时氧化膜还会吸附水分,使焊缝易出现气孔。所以,焊前要严格清理金属表面,焊接过程中对熔池及高温金属要有效保护,防止再氧化。

(3)容易产生气孔液态铝不溶解氮,但可以溶解大量的氢,而在固态时氢在铝中的溶解度几乎等于零。当熔池快速冷却时,氢的溶解度急剧下降,在凝固点由0.69cm3/100g下降到0.036cm3/100g。来不及逸出的氢在焊缝中集聚成气孔。

铝及铝合金焊接时产生的气孔有三种:

1)分散气孔 常出现在焊缝截面中,数量多、尺寸小(<0.2mm)、呈弥散状分布,试样断口上呈圆形高白色的点。焊接气氛中所含的水分是产生这种氢气孔的原因。纯铝比铝镁合金更容易产生这种气孔。

2)集中气孔 往往分布在熔合线附近,尺寸大,断面为圆形,内壁光滑;呈亮白色或金黄色(油污氧化引起)。母材表面及坡口未去净的氧化膜所吸附的水分是产生这种氢气孔的原因。铝镁合金比纯铝容易形成吸水强、疏松、厚的表面氧化膜层,所以,集中气孔比纯铝严重。

3)热影响区气孔 分布于热影响区表面,含镁量较高的铝镁合金易产生此种气孔,并且有时形成连续的凸起鼓胀现象。这是由于高温下氢压的作用,使氢向热影响区扩散而形成气孔。

(4)易产生热裂纹 铝的线膨胀系数大、凝固收缩率大、导热快、加热时间长、受热面积大,所以,焊接变形及应力大。而高温时塑性差,在640~650℃时δ<0.6%,在350~400℃时σb≤10mpa,某些铝合金易形成低熔点共晶物,因此容易产生裂纹。

(5)焊接接头性能下降 铝合金中所含的合金元素mg、zn、mn等高温下易烧损,使焊缝性能下降。热影响区由于受热软化,若纯铝板在冷作硬化状态下焊接,接头强度会下降,热处理强化铝合金软化更严重,接头强度只有母材的40%~50%。

(6)易产生焊缝塌陷和烧穿 由于铝及铝合金高温时强度比较低,固液态转变时没有显著的颜色变化,而且熔池表面又有一层氧化膜,焊接时很难判断熔化情况,所以熔池温度很难掌握,稍不注意就会塌陷乃至烧穿。

气焊铝及铝合金时,材料的相对焊接性见表2。

表2气焊铝及铝合金的相对焊接性

工业纯铝 铝锰合金 铝镁合金 硬铝

适用厚度范围/mm

l1~l7 lf21 lf5、lf6 lf2、lf3

ly11、ly12

适宜范围 厚度界限

好 好 差 尚可 差 0.5~10 0.3~25

2.气焊铝及铝合金用焊丝与焊剂

气焊铝及铝合金时,一般应选用与母材化学成分相近的焊丝,也可用母材切条为填充金属。常用的焊丝牌号及化学成分见表3-42。选用焊丝时必须考虑到抗裂纹性能、耐腐蚀性能和接头力学性能。

铝及铝合金焊前虽然经过清理,但其表面氧化膜有可能清除不干净,焊接时又会产生新的氧化膜。所以,焊接时应采用熔剂,清除熔池中的氧化膜和其它杂质,提高熔化金属的流动性,使焊接顺利并保证质量和成形。气焊铝及铝合金常用熔剂配方见表3。

表3 气焊铝及铝合金熔剂的配方(质量分数)(%)

组成

铝块

晶石 氯化钠 氯化钾 氯化钡 氯化锂 氟化钠 氟化钙

硼砂 其它

cj401 — 27~30 49.5~52 — 13.5~15 7.5~9

— — —

1 — 19 29 48 — — 4 — —

2 30 30 40 — — — — — —

3 20 — 40 40 — — — — —

4 — 45 30 — 10 15 — — —

5 — 27 18 — — — — 14 硝酸钾41

6 — 20 40 20 — 20 — — —

7 — 25 25 — — — — 40 硫酸钠10

8 4.8 — — 33.3 19.5 — 14.8

氧化镁2.8

氟化镁24.8

9 — — — 70 15 氟化锂15 — — —

10 硝酸钾28 9 3 — — — — 40 硫酸钾20

11 4.5 40 15 — — — — — —

12 20 30 30 — — — — — —

3.铝及铝合金气焊的工艺要求

(1) 严格清除焊件接头处及焊丝表面的氧化膜和油污。清理方法有化学清理和机械清理两种。较小焊件及焊丝适于化学清洗,尺寸较大的焊件常用机械方法清理,其工艺见表4。焊件及焊丝经清理后在存放过程中会重新生成氧化膜,所以,应缩短清理后至焊接前的存放时间,干燥环境间隔时间不超过24h,潮湿环境不超过4h, 否则应重新清理氧化膜。采用抛光处理焊丝并用塑料密封,保存期可达半年。

表4铝及铝合金的焊前清理

工序 除油 碱洗 冲洗

溶液ω/% 温度/℃ 时间/min

化学清洗法

纯铝

汽油、煤油、丙酮等除油剂

naoh

6~10 40~60 ≤20 流动清水

铝镁、

铝锰合金 ≤7

工序 中和光化 冲洗 干燥

溶液φ/% 温度/℃ 时间/min

化学清洗法

纯铝 hno3

30

室温或

40~60 1~3 流动清水

风干或

低温干燥

铝镁、铝

锰合金

机械法

用丙酮或汽油进行表面除油,随后用φ0.15mm丝径的铜或不锈钢丝刷子刷,直至露出金属光泽为止。也可以用刮刀清理焊件表面

(2)坡口形式及尺寸 气焊铝及铝合金的坡口形式及尺寸见表5。

气焊铝及铝合金时,不宜采用搭接接头和t形接头。因为这种接头易残留熔剂和焊渣,不便焊后清除,使接头耐腐蚀性下降。

为保证焊件焊接时既焊透而又不塌陷和烧穿,可以采用垫板。垫板可用不锈钢板、碳素钢板或石墨板。当单面焊双面成形时,应在接触介质一面施焊。

(3) 合理选择焊丝与熔剂 sa1si5是一种通用焊丝,焊缝金属流动性好,抗裂纹性能高,并能保证一定的力学性能,除铝镁合金外,常采用此焊丝。因铝镁合金采用sa1si5焊丝时,会在晶间析出mgsi脆性化合物,使接头塑性和抗腐蚀性能下降,甚至引起裂纹,焊接铝镁合金时应采用sa1mg5ti焊丝。

表5铝及合金气焊坡口形式与尺寸

板厚

/mm

施焊

方法

坡口

名称 坡口形式 尺寸

b/mm p/mm

α/(°)

≤2 单面焊 卷边 — — —

≤5 单面焊 i型 1~1.5 — —

5~10 单面焊 v型 2~4 0.5~2 65±5

气焊熔剂有含锂和不含锂两类,含锂的熔剂熔点较低,熔渣的熔点、粘度也较低,焊后易清除,但价格高,吸潮性强,应以干粉状加入熔池。不含锂的熔剂价格低,但熔点高,熔渣粘度大,易夹渣,适于较高温度下焊接用。

气焊角接及搭接接头时,由于熔渣不易清除干净,建议选用表3中序号7熔剂。铝镁合金焊接不宜采用含钠熔剂,可采用表3中序号8、9号熔剂。

(4)气焊铝及铝合金时应采用中性焰或乙炔稍多的中性焰,严禁采用氧化焰。焊接薄板时火焰能率稍小,焊接厚板时火焰能率应大。其板厚与焊炬的使用见表6。

由于铝及铝合金高温固液态转变时没有明显的颜色变化,所以熔化情况不易掌握。当加热表面由光亮银白色变成暗淡的银白色,表面氧化膜起皱,加热处金属有波动现象时,即达熔化温度,可以施焊;用蘸有熔剂的焊丝端头触及加热处有粘性,焊丝与母材能熔合时,即达熔化温度,可以施焊;母材边棱有倒下现象时,母材达熔化温度,可以施焊。

表6气焊铝及铝合金的焊炬与板厚关系

板厚/mm 1.2 1.5~2.0 3.0~4.0

焊炬型号 h01-6 h01-6 h01-6

焊嘴号 1 1~2 3~4

焊嘴孔径/mm

0.9 0.9~1.0 1.1~1.3

焊丝直径/mm

1.5~2.0 2.0~2.5 2.0~3.0

板厚/mm 5.0~7.0

7.0~10.0

10.0~20.0

焊炬型号 h01-12 h01-12 h01-20

焊嘴号 1~3 2~4 4~5

焊嘴孔径/mm

1.4~1.8 1.6~2.0 3.0~3.2

焊丝直径/mm

4.0~5.0 5.0~6.0 5.0~6.0

当气焊薄小件时采用左焊法,厚度较大焊件采用右焊法。

气焊3mm以下薄件时,焊炬倾角为20°~40°,气焊厚件时,焊炬倾角为40°~80°,焊丝与焊炬夹角为80°~100°。

(5)预热 气焊薄小件时,一般不需要预热,厚度大于5mm及结构复杂件,应进行局部或整体预热,温度为150~300℃

(6)定位焊 采用比正式焊接稍大的火焰,焰芯距焊件表面3~5mm,焊炬与焊件夹角为50°左右。较长焊缝从中间向两端定位焊,环缝对称定位焊,一般要求见表7和表8。

(7)焊炬操作 气焊铝及铝合金时,焊炬可以上下跳动前进或平直前进,见图1。

气焊3mm以下薄件时,焊炬上下跳动前进,跳动幅度为3~4mm,焰芯尖端距焊件3~5mm,焊丝做反向的跳动;气焊厚大件时,焊炬平直前进,焰芯尖端距焊件表面3~5mm,焊丝上下跳动,拨开氧化膜,搅动熔池。

表7铝及铝合金板定位焊要求(mm)

板厚 <1.5 1.5~2.0 3~4 5~7

定位焊间距

10~30 30~50 50~70 80~100

定位焊缝长度

5~8 6~10 10~15 20~30

焊点高度 1~1.2 1.2~2 2.5~3 3~5

板厚 7~10 10~16 >16

定位焊间距

100~120 120~180 180~240

定位焊缝长度

30~40 40~50 50~60

焊点高度 3~5 5~7 6~8

管材直径

壁厚(δ)

定位焊位置及数量

定位焊缝长度

定位焊缝高度

≤18 1~3.5

对接定位焊 2处

5~10 ≤δ

25~55 1.5~5

对称定位焊 3处

10~20

δ~2/3δ

75~120 2.5~10

对接定位焊 4处

30~40

δ~2/3δ

(8) 焊后处理 焊后残存在焊缝及附近的熔剂和焊渣要及时清理干净,否则会腐蚀焊件。清理方法为:先在60~80℃热水中用硬毛刷洗刷焊接接头,重要构件洗刷后再放入 60~80℃、质量分数为2%~3%的铬酐水溶液中浸泡5~10min,然后再用硬毛刷仔细洗刷,最后用热水冲洗干洗。

清理后若焊接接头表面无白色附着物即可认为合格,或用质量分数为2%硝酸银溶液滴在焊接接头上,若没有产生白色沉淀物,即说明清洗干净。

铸造铝合金补焊后为消除内应力,可进行300~350℃退火处理。

4.铝及铝合金的气焊实例

铝冷凝器端盖的气焊,其结构见图2,材料为lf6,焊接工艺要点如下:

图1气焊铝及铝合金时焊炬的运动方式

a)上下跳动前进;b)平直前进

1)采用化学清洗的办法(见表4)将接管、端盖、大小法兰、焊丝清洗干净。

图2铝冷凝器端盖示意图

2)焊丝选用sa1mg5ti,φ4mm,熔剂选用cj401。用气焊火焰将焊丝加热,在熔剂槽内将焊丝蘸满cj401备用。

3)采用中性焰,右向焊法焊接。焊炬选用h01-12,选用3号焊嘴。

4)焊接小法兰盘与接管。用气焊火焰对小法兰均匀加热,待温度达250℃左右时组焊接管。定位焊两处,从第三点进行焊接。为避免变形和隔热,在预热和焊接时小法兰盘放在耐火砖上。

5)焊接端盖与大法兰盘。切割一块与大法兰盘等径的厚度20mm的钢板,并将其加热到红热状态,将大法兰盘放在钢板上,用两把焊炬将其预热到300℃左右,快速将端盖组合到大法兰盘上。定位三处,从第四点施焊。焊接过程中保持大法兰盘的温度,并不间断焊接。

6)焊接接管与端盖焊缝,预热温度为250℃

7)焊后清理:先在60~80℃热水中用硬毛刷刷洗焊缝及热影响区,再放入60~80℃、质量分数为2%~3%的铬酐水溶液中浸泡5~10min,再用硬毛刷刷洗,然后用热水冲洗干净并风干。

9. 铝合金如何焊接

1.
钨极氩弧焊 钨极氩弧焊法主要用于铝合金,是一种较好的焊接方法,不过钨极氩弧焊设备较复杂,不合适在露天条件下操作。
2.
电阻点焊、缝焊 这种焊接方法可以用来焊接厚度在5mm以下的铝合金薄板。但是在焊接时用的设备比较复杂,焊接电流大、生产率较高,特别...
3.
脉冲氩弧焊 脉冲氩弧焊可以很好的改善在焊接过程中的稳定性可以调节参数来控制电弧功率和焊缝...
4.
搅拌摩擦焊 搅拌摩擦焊首先并主要在铝合金、镁合金等轻金属结构领域得

10. 铝镁的焊接工艺及技巧

铝镁合金焊缝中的气孔主要是由氢引起的。氢的来源有:焊丝和板材中溶解的氢及 其表面氧化膜吸附的结晶水;氩气中的氢和湿气;焊接时由于保护不好空气中的氢和水气进入焊 接熔池等。氢在铝的熔点温度下溶解度发生突变,并随温度增加而急增。铝镁合金在焊接时,焊 缝中能否产生气泡首先取决于溶入氢的浓度,在溶入氢的浓度小于0.69 cm/100g 时,形成气泡 的可能性极小。但在实际焊接过程中,由于某些因素控制不严,在电弧高温作用下,溶解于铝中 氢的浓度就会大于0.69 cm/100g,此时气孔的产生主要取决于结晶速度:当结晶速度快到恰好 抑制了气泡的形成,则氢只能饱和固溶于焊缝金属中,而不以气泡形式逸出,气孔就会发生;当 结晶速度足够慢,已形成的氢气泡来得及逸出焊缝溶池时,也不会形成气孔;当结晶速度正好使 气泡能够形成而来不及逸出时便产生气孔。其次铝镁合金的导热性强,在同样的工艺条件下其熔 合区的冷却速度是钢的4~7倍,不利于气泡的浮出,实际冷却条件下是非平衡状态。实际生产中 发现铝镁合金对氢的溶解度较大,对气孔的敏感性比纯铝低,出现的气孔比较少。 弧柱气氛中水分弧柱空间总是或多或少存在一定数量的水分,尤其在潮湿季节或湿度大的环境里进行焊接时,由 弧柱气氛中的水分分解产生的氢,溶入过热的熔融金属中,是焊缝气孔产生的主要原因。 弧柱气氛中的氢形成焊缝的气孔还与其在铝镁合金中溶解度的变化特性有关,如图3-1所示。在 平衡状态下,氢的溶解度沿图中的实线发生变化,在凝固点时可从0.69 mL/100g 突降到 0.036mL/100g,相差约20倍(在钢中只差不到2倍),这就是形成气孔的重要原因之一。况且铝镁 合金的导热性很强,在同样的工艺条件下,熔合区的冷却速度是高强钢的4~7倍,不利于气泡的 浮出,更易促使形成气孔。而在实际的冷却条件下是非平衡状态,溶解度变化沿a 间溶解度差所造成的气泡数量虽然不多,但可能来不及逸出,而在上浮途中被“搁浅”,形成粗大而孤立的“皮下气孔”;同样,若 冷却速度较小,从a 到b’气孔虽然多一些,但可能来得及聚合浮出,在凝固点时,由于溶解度 突变 c’),伴随着凝固过程可在结晶的枝晶前沿形成许多微小气泡,枝晶晶体的交互生长致使气泡的生长受到限制,并且不利于浮出,因而可沿结晶的层撞线形成均布形式的 小气孔,称为“结晶层气孔”。 不同的合金系统,对弧柱气氛中水分的敏感性不同,纯铝对气氛中水分最为敏感。Al-Mg 合金含 Mg 量增高,氢的溶解度和引起气孔的临界分压PH2均随之增大,因而对吸收气氛中水分不太敏感。 相比起来,仅对气氛中水分而言,同样焊接条件下,纯铝焊缝产生气孔的倾向要大些。 不同的焊接方法,对弧柱气氛中水分的敏感性也是不同的。TIG 或MIG 焊接时氢的吸收速率和吸 收数量有明显差别。在MIG 焊接时,焊丝是以细小熔滴形式通过弧柱而落入熔池,由于弧柱温度 最高,且熔滴比面积很大,熔滴金属显然最有利于吸收氢;而TIG 焊接时,主要是熔池金属表面 与气体氢反应,因其比表面积小和熔池温度低于弧柱温度,吸收氢的条件不如MIG 焊时有利。同 时,MIG 焊的熔池深度一般大于TIG 焊时深度,也不利于气泡的浮出。所以,MIG 焊焊接时,在 同样的气氛条件下,焊缝气孔倾向要比TIG 焊时大些。 氧化膜中水分在正常的焊接条件下,对于气氛中的水分已经尽量加以限制,这时,焊丝或工件的氧化膜中所吸 附的水分将是生产焊缝气孔的主要原因。而氧化膜不致密、吸水性强的铝合金,要比氧化膜致密 的纯铝具有更大的气孔倾向。这是因为铝镁合金的氧化膜是由Al2O3和MgO 所构成,而MgO 越多, 形成的氧化膜越不致密,因而更容易吸附水分。 MIG焊接时,焊丝表面氧化膜的作用将具有重要意义。MIG 焊接时,由于熔深较大,工件端 部的氧化膜迅速熔化掉,有利于氧化膜中水分的排除,坡口氧化膜对焊缝气孔的影响就小得多了。 焊丝表面氧化膜的清理情况对焊缝含氢量的影响是比较大的, Al-Mg 合金焊丝,则其影响更显 著。实践表明,在严格限制弧柱气氛水分的MIG 焊接条件下,用Al-Mg 合金焊丝比用纯铝焊丝时 具有较大的气孔倾向。 TIG 焊接时,在熔透不足的情况下,母材坡口根部未除净的氧化膜中所吸附的水分,常常是产生 焊缝气孔的主要原因。这种氧化膜不仅提供了氢的来源,而且能使气泡聚集附着。在刚刚形成熔 池时,如果坡口附近的氧化膜未能完全熔化而残存下来,则氧化膜中水分因受热而分解出氢,并 在氧化膜上萌生出气泡;由于气泡是附着在残留氧化膜上,不容易脱离浮出,而且还因气泡是在 熔化的早期形成的,有条件长大,所以常常造成集中形式的大气孔。这种气孔在焊缝根部有未熔 合是就更严重。坡口端部氧化膜引起的气孔,常常沿着熔合区原坡口边缘分布,且内壁呈氧化色 彩,是其重要特征。由于Al-Mg 合金比纯铝更容易形成疏松而吸水性强的厚氧化膜,所以Al-Mg 合金比纯铝更容易产生这种集中形式的氧化膜气孔。为此,焊接铝镁合金时,焊前必须特别仔细 地清理坡口端部的氧化膜。 顺便提到,母材表面氧化膜也会在近缝区引起“气孔”,主要发现于Al-Mg 合金气焊的条件下, 实际上用气焊火焰沿板表面加热一道后,也能看到这种现象。这种“气孔”往往以表面密集的小 颗粒状的“鼓泡”形式呈现出来,也可认为是“皮下气泡”。关于这种“气孔”的产生机理,还 没有比较合理的解释。 材料特性由于液态铝在高温时能吸收大量的氢,冷却时氢在其中的溶解能力急剧下降,在固态时又几乎不 溶解氢,致使原来溶于液态铝的氢大量析出,形成气泡。同时,因铝及铝合金密度小、导热性很 强,不利于气泡的逸出,因此,铝及铝合金焊接易产生气孔。此外,铝镁合金化学活泼性强,表 面极易形成熔点高的氧化膜Al2O3和MgO,由于MgO 的存在,形成的氧化膜疏松且吸水性强,这 就更难避免焊缝中产生密集气孔。用TIG 焊,虽然负半周瞬间氩离子对氧化膜具有“阴极雾化” 作用,但并不能去除氧化膜中的水分,因而铝镁合金焊接比纯铝具有更大的气孔倾向。 氩气的流量与纯度氩气的流量是影响熔池保护效果的一个重要参数。流量过小,氩气挺度不够,排除周围空气能力 弱,保护效果差。但是流量过大,不仅浪费氩气,而且会引起喷出气流层流区缩短,紊流区扩大, 将空气卷入保护区,反而降低了保护效果,使焊缝易产生气孔。这一点在现场施焊时,往往被忽 视。因此,必须选择合适的氩气流量。氩气流量与喷嘴直径大小有关。氩气的纯度对焊接质量也 有较大的影响。氩气纯度低、杂质多,可增加弧柱气氛中氢的含量,同时也降低“阴极雾化”效 焊接工艺焊件坡口准备、组对方式和焊接工艺参数的选择对防止气孔产生至关重要。焊件组对时根部留有 间隙,可使氧化膜有效地暴露在电弧作用范围内。改变焊接参数可影响气体逸出和溶入熔池条件。 焊接速度过慢,熔池保留时间长,增加氢的溶入量;焊接速度较快,易产生未焊透和未熔合缺陷。 实践证明,采用较快的焊接速度,并配以较大的焊接电流,可有效防止气孔的产生。增大焊接电 流不仅能保证根部熔合,而且能增加电弧对熔池的搅拌作用,有利于根部氧化膜中气泡的浮出, 从而减少气孔的产生。 焊接操作技术掌握熟练的操作技能也是防止气孔的一个重要环节。铝镁合金管道现场焊接位置一般为全位置焊 接,施焊时金属熔池所处空间位置不断改变,操作难度较大。但焊枪与工件表面后倾角不能随熔 池位置的改变而任意改变。若夹角过小,其内侧产生紊流,外侧则氩气挺度不够,气体保护熔池 效果差。水平管仰焊接头部位可采用交叉接头法,以避免接头部位产生密集气孔。此外,钨极伸 出长度过长、电弧过长或不稳等,都可能造成保护气体的污染而使焊缝产生气孔。 其它影响因素除上述因素外,还应注意环境因素等方面的影响。在高湿度的环境下,焊丝或输氩管内壁易吸附 结晶水。因此,环境相对湿度愈低愈好。环境温度低于5C 施焊时要预热。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506