焊接的名称都有哪些
『壹』 电焊的种类都有哪些
1.激光焊是一种以聚焦的激光束作为能源轰击焊件所产生的热量进行焊接的方法。由于激光具有折射、聚焦等光学性质,使得激光焊非常适合于微型零件和可达性很差的部位的焊接。激光焊还有热输入低,焊接变形小,不受电磁场影响等特点。
由于目前激光器价格昂贵、电光转换效率较低等原因,激光焊尚未广泛应用。
2.电子束焊是指利用加速和聚焦的电子束轰击置于真空或非真空中的焊接面,使被焊工件熔化实现焊接。真空电子束焊是应用最广的电子束焊。
3.电渣焊是利用电流通过熔渣所产生的电阻热作为热源,将填充金属和母材熔化,凝固后形成金属原子间牢固连接。
在开始焊接时,使焊丝与起焊槽短路起弧,不断加入少量固体焊剂,利用电弧的热量使之熔化,形成液态熔渣,待熔渣达到一定深度时,增加焊丝的送进速度,并降低电压,使焊丝插入渣池,电弧熄灭,从而转入电渣焊焊接过程。
4.电弧焊,是指以电弧作为热源,利用空气放电的物理现象,将电能转换为焊接所需的热能和机械能,从而达到连接金属的目的。主要方法有焊条电弧焊、埋弧焊、气体保护焊等,它是目前应用最广泛、最重要的熔焊方法,占焊接生产总量的60%以上。
5.不锈钢氩弧焊.指不锈钢材料的焊接。希望我的回答能够满意,谢谢!
『贰』 焊缝的分类及名称
焊缝(英文名:weld)是焊件经焊接后所形成的结合部分。
分类编辑
1.平焊缝
2.角焊缝
3.船形焊缝
4.单面焊缝
5.单面焊双面成形焊缝
按焊缝本身截面形式不同,焊缝分为对接焊缝和角焊缝。
对接焊缝:
按焊缝金属充满母材的程度分为焊透的对接焊缝和未焊透的对接焊缝。未焊透的对接焊缝受力很小,而且有严重的应力集中。焊透的对接焊缝简称对接焊缝。
为了便于施工,保证施工质量,保证对接焊缝充满母材缝隙,根据钢板厚度采取不同的坡口形式.当间隙过大(3~6mm)时,可在V形缝及单边V形缝、I形缝下面设一块垫板(引弧板),防止熔化的金属流淌,并使根部焊透。为保证焊接质量,防止焊缝两端凹槽,减少应力集中对动荷载的影响,焊缝成型后,除非不影响其使用,两端可留在焊件上,否则焊接完成后应切去。
角焊缝:
连接板件板边不必精加工,板件无缝隙,焊缝金属直接填充在两焊件形成的直角或斜角的区域内。
直角焊缝中直角边的尺寸称为焊脚尺寸,其中较小边的尺寸用hf表示。
为保证焊缝质量,宜选择合适的焊角尺寸。如果焊脚尺寸过小,则焊不牢,特别是焊件过厚,易产生裂纹;如果焊脚尺寸过大,特别是焊件过薄时,易烧伤穿透,另外当贴边焊时,易产生咬边现象。
『叁』 有哪些焊接方法代号
检验方式符号、其他要求和说明等标在 尾部右侧
焊接代号
AW —— ARC WELDING——电弧焊
AHW —— atomic hydrogen welding——原子氢焊
BMAW —— bare metal arc welding——无保护金属丝电弧焊 CAW —— carbon arc welding——碳弧焊
CAW-G —— gas carbon arc welding——气保护碳弧焊
CAW-S —— shielded carbon arc welding——有保护碳弧焊 CAW-T —— twin carbon arc welding——双碳极间电弧焊 EGW —— electrogas welding——气电立焊
FCAW —— flux cored arc welding——药芯焊丝电弧焊
FCW-G —— gas-shielded flux cored arc welding——气保护 药芯焊丝电弧焊
FCW-S —— self-shielded flux cored arc welding—— 888真 人自保护药芯焊丝电弧焊
GMAW —— gas metal arc welding——熔化极气体保护电弧焊 GMAW-P —— pulsed arc——熔化极气体保护脉冲电弧焊
GMAW-S —— short circuiting arc——熔化极气体保护短路过 度电弧焊
GTAW —— gas tungsten arc welding——钨极气体保护电弧焊 GTAW-P —— pulsed arc——钨极气体保护脉冲电弧焊
MIAW —— magnetically impelled arc welding——磁推力电弧焊
PAW —— plasma arc welding——等离子弧焊
SMAW —— shielded metal arc welding——焊条电弧焊
SW —— stud arc welding——螺栓电弧焊
SAW —— submerged arc welding——埋弧焊
SAW-S —— series ——横列双丝埋弧焊
RW —— RWSISTANCE WELDING——电阻焊
FW —— flash welding——闪光焊
RW-PC —— pressure controlled resistance welding——压力 控制电阻焊
PW —— projection welding——凸焊
RSEW —— resistance seam welding——电阻缝焊
RSEW-HF —— high-frequency seam welding——高频电阻缝焊 RSEW-I —— inction seam welding——感应电阻缝焊
RSEW-MS —— mash seam welding——压平缝焊
RSW —— resistance spot welding——点焊
UW —— upset welding——电阻对焊
UW-HF —— high-frequency ——高频电阻对焊
UW-I —— inction ——感应电阻对焊
SSW —— SOLID STATE WELDING——固态焊
CEW —— co-extrusion welding——
CW —— cold welding——冷压焊
DFW —— diffusion welding——扩散焊
HIPW —— hot isostatic pressure diffusion welding——热 等静压扩散焊
EXW —— explosion welding——爆炸焊
FOW —— forge welding——锻焊
FRW —— friction welding——摩擦焊
FRW-DD —— direct drive friction welding——径向摩擦焊 FSW —— friction stir welding——搅拌摩擦焊
FRW-I —— inertia friction welding——惯性摩擦焊
HPW —— hot pressure welding——热压焊
ROW —— roll welding——热轧焊
USW —— ultrasonic welding——超声波焊
S —— SOLDERING ——软钎焊
DS —— dip soldering——浸沾钎焊
FS —— furnace soldering——炉中钎焊
IS —— inction soldering——感应钎焊
IRS —— infrared soldering——红外钎焊
INS —— iron soldering——烙铁钎焊
RS —— resistance soldering——电阻钎焊
TS —— torch soldering——火焰钎焊
UUS —— ultrasonic soldering——超声波钎焊
WS —— wave soldering——波峰钎焊
B —— BRAZING ——软钎焊
BB —— block brazing——块钎焊
DFB —— diffusion brazing——扩散焊
DB —— dip brazing——浸沾钎焊
EXB —— exothermic brazing——反应钎焊
FB —— furnace brazing——炉中钎焊
IB —— inction brazing——感应钎焊
IRB —— infrared brazing——红外钎焊
RB —— resistance brazing——电阻钎焊
TB —— torch brazing——火焰钎焊
TCAB —— twin carbon arc brazing——双碳弧钎焊 OFW —— OXYFUEL GAS WELDING——气焊
AAW —— air-acetylene welding——空气乙炔焊
OAW —— oxy-acetylene welding——氧乙炔焊
OHW —— oxy-hydrogen welding——氢氧焊
PGW —— pressure gas welding——气压焊
OTHER WELDING AND JOINING——其他焊接与连接方法 AB —— adhesive bonding——粘接
BW —— braze welding——钎接焊
ABW —— arc braze welding——电弧钎焊
CABW —— carbon arc braze welding——碳弧钎焊 EBBW —— electron beam braze welding——电子束钎焊
EXBW —— exothermic braze welding——热反应钎焊
FLB —— flow brazing——波峰钎焊
FLOW —— flow welding——波峰焊
LBBW —— laser beam braze welding——激光钎焊
EBW —— electron beam welding——电子束焊
EBW-HV —— high vacuum——高真空电子束焊
EBW-MV —— medium vacuum——中真空电子束焊
EBW-NV —— non vacuum——非真空电子束焊
ESW —— electroslag welding——电渣焊
ESW-CG —— consumable guide eletroslag welding——熔嘴电 渣焊
IW —— inction welding——感应焊
LBW —— laser beam welding——激光焊
PEW —— percussion welding——冲击电阻焊
TW —— thermit welding——热剂焊
THSP —— THERMAL SPRAYING——热喷涂
ASP —— arc spraying——电弧喷涂
FLSP —— flame spraying——火焰喷涂
FLSP-W —— wire flame spraying——丝材火焰喷涂
HVOF —— high velocity oxyfuel spraying——高速氧燃气喷 涂
PSP —— plasma spraying——等离子喷涂
VPSP-W —— vacuum plasma spraying——真空等离子喷涂 TC —— THERMAL CUTTING——热切割
OC —— OXYGEN CUTTING——气割
OC-F —— flux cutting——熔剂切割
OC-P —— metal powder cutting——金属熔剂切割
OFC —— oxyfuel gas cutting——氧燃气切割
CFC-A —— oxyacetylene cutting——氧乙炔切割
CFC-H —— oxyhydrogen cutting——氢氧切割
CFC-N —— oxynatural gas cutting——氧天然气切割
CFC-P —— oxypropanne cutting——氧丙酮切割
OAC —— oxygen arc cutting——氧气电弧切割
OG —— oxygen gouging——气刨
OLC —— oxygen lance cutting——氧矛切割
AC —— ARC CUTTING——电弧切割
CAC —— carbon arc cutting——碳弧切割
CAC-A —— air carbon arc cutting——空气碳弧切割
GMAC —— gas metal arc cutting——熔化极气体保护电弧切割 GTAC —— gas tungsten arc cutting——钨极气体保护电弧切 割
PAC —— plasma arc cutting——等离子弧切割
SMAC —— shielded metal arc cutting——焊条电弧切割 HIGH ENERGY BEAM CUTTING——高能束切割
6/7页
EBC —— electron beam cutting——电子束切割 LBC —— laser beam cutting——激光切割 LBC-A —— air ——空气激光切割
LBC-EV —— evaporative ——蒸气激光切割 LBC-IG —— inert gas——惰性气体激光切割 LBC-O —— oxygen ——氧气激光切割
『肆』 焊接的种类有哪些
焊接的种类有:焊条电弧焊、二保焊、氩弧焊、气焊、等离子焊、钎焊、埋弧焊、电阻焊等。
『伍』 焊接结构都有哪些种类
焊接结构种类繁多,生产工艺过程和要求也不尽相同,相应的焊接工装夹具专和变位机械在形式属、工作原理及技术要求上也有很大差别。随着焊接结构应用范围的扩大,焊接生产机械化自动化水平的提高,焊接结构生产所用的夹具,变位机械之类辅助机械装备的种类亦将不断增加。 按照这些辅助机械装备或称焊接工艺装备的用途可分为:焊接工装夹具、焊接变位机械、焊接过程组合机械,焊接辅助装置等四类。用来装配定位工件的夹具称为工装夹具;用来焊接工件的夹具称为焊接夹具,既用来装配又用来焊接的夹具,则称之为装配焊接夹具。它们统称焊接夹具。按动力源焊接工装夹具分为:手动夹具,气动夹具,液压夹具,磁力夹具,真空夹具,电动夹具等六类。
『陆』 焊接的分类有哪些
常用的焊接方式如下:
1、直线形运条法。采用这种运条法焊接时,焊条不做横向摆动,沿焊接方向做直线移动。它常用于Ⅰ形坡口的对接平焊,多层焊的第一层焊或多层多道焊。
2、直线往复运条法。采用这种运条方法焊接时,焊条末端沿焊缝的纵向做来回摆动。它的特点是焊接速度快,焊缝窄,散热快。它适用于薄板和接头间隙较大的多层焊的第一层焊。
3、锯齿形运条法。采用这种运条方法焊接时,焊条末端做锯齿形连续摆动及向前移动,并在两边稍停片刻。摆动的目的是为了控制熔化金属的流动和得到必要的焊缝宽度,以获得较好的焊缝成形。
这种运条方法在生产中应用较广,多用于厚钢板的焊接,平焊、仰焊、立焊的对接接头和立焊的角接接头。
4、月牙形运条法。采用这种运条方法焊接时,焊条的末端沿着焊接方向做月牙形的左右摆动。摆动的速度要根据焊缝的位置、接头形式、焊缝宽度和焊接电流值来决定。同时需在接头两边停留片刻,这是为了使焊缝边缘有足够的熔深,防止咬边。
这种运条方法的特点是金属熔化良好,有较长的保温时间,气体容易析出,熔渣也易于浮到焊缝表面上来,焊缝质量较高,但焊出来的焊缝余温较高。这种运条方法的应用范围和锯齿形运条法基本相同。
5、三角形运条法。采用这种运条方法焊接时,焊条末端做连续三角形运动,并不断向前移动。按照摆动形式的不同,可分为斜三角形和正三角形两种,斜三角形运条法适用于焊接平焊和仰焊位置的T形接头焊缝和有坡口的横焊缝,其优点是能够借焊条的摆动来控制熔化金属,促使焊缝成形良好。
正三角形运条法只适用于开坡口的对接接头和T形接头焊缝的立焊,特点是能一次焊出较厚的焊缝断面,焊缝不易产生夹渣等缺陷,有利于提高生产效率。
6、圆圈形运条法。采用这种运条方法焊接时.焊条末端连续做正圆圈或斜圆圈形运动,并不断前移。正圆圈形运条法适用于焊接较厚焊件的平焊缝,其优点是熔池存在时间长,熔池金属温度高,有利于溶解在熔池中的氧、氮等气体的析出,便于熔渣上浮。
斜圆圈形运条法适用于平、仰位置T形接头焊缝和对接接头的横焊缝,其优点是利于控制熔化金属不受重力影响而产生下淌现象,有利于焊缝成形。
『柒』 电焊的种类有哪些
1、电焊的种类:
电焊的种类比较多,目前常用的有以下几种
▪ 电弧焊
电弧焊是目前应用最广泛的焊接方法。它包括有:手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极 气体保护焊等。绝大部分电弧焊是以电极与工件之间燃烧的电弧作热源。在形成接头时,可以采用也可以不采用填充金属。所用 的电极是在焊接过程中熔化的焊丝时,叫作熔化极电弧焊,诸如手弧焊、埋弧焊、气体保护电弧焊、管状焊丝电 弧焊等;所用的电极是在焊接过程中不熔化的碳棒或钨棒时,叫作不熔化极电弧焊,诸如钨极氩弧焊、等离子弧 焊等。
(1)手弧焊
手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。它是以外部涂有涂料的焊条作电极和 填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。涂料在电弧热作用下一方面可以产生气体以保护电弧 ,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。熔渣的更重要作用是与熔化金 属产生物理化学反应或添加合金元素,改善焊缝金属性能。手弧焊设备简单、轻便,操作灵活。可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的 焊接。手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。
(2)埋弧焊
埋弧焊是以连续送时的焊丝作为电极和填充金属。焊接时,在焊接区的上面覆盖一层颗粒状焊剂,电弧在焊剂层 下燃烧,将焊丝端部和局部母材熔化,形成焊缝。在电弧热的作用下,上部分焊剂熔化熔渣并与液态金属发生冶金反应。熔渣浮在金属熔池的表面,一方面可以保 护焊缝金属,防止空气的污染,并与熔化金属产生物理化学反应,改善焊缝金属的成分及性能;另一方面还可以 使焊缝金属缓慢泠却。埋弧焊可以采用较大的焊接电流。与手弧焊相比,其最大的优点是焊缝质量好,焊接速度高。因此,它特别适于 焊接大型工件的直缝的环缝。而且多数采用机械化焊接。埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接。由于熔渣可降低接头冷却速度,故某些高强度结构钢、 高碳钢等也可采用埋弧焊焊接。
(3)钨极气体保护电弧焊
这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。焊接过程中钨极不 熔化,只起电极的作用。同时由焊炬的喷嘴送进氩气或氦气作保护。还可根据需要另外添加金属。在国际上通称 为TIG焊。钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。这种方法几乎 可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及像钛和锆这些活泼金属。这 种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。
(4)等离子弧焊
等离子弧焊也是一种不熔化极电弧焊。它是利用电极和工件之间地压缩电弧(叫转发转移电弧)实现焊接的。所 用的电极通常是钨极。产生等离子弧的等离子气可用氩气、氮气、氦气或其中二者之混合气。同时还通过喷嘴用 惰性气体保护。焊接时可以外加填充金属,也可以不加填充金属。等离子弧焊焊接时,由于其电弧挺直、能量密度大、因而电弧穿透能力强。等离子弧焊焊接时产生的小孔效应, 对于一定厚度范围内的大多数金属可以进行不开坡口对接,并能保证熔透和焊缝均匀一致。因此,等离子弧焊的 生产率高、焊缝质量好。但等离子弧焊设备(包括喷嘴)比较复杂,对焊接工艺参数的控制要求较高。钨极气体保护电弧焊可焊接的绝大多数金属,均可采用等离子弧焊接。与之相比,对于1mm以下的极薄的金属的焊 接,用等离子弧焊可较易进行。
(5)熔化极气体保护电弧焊
这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接 的。熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。以氩气或氦气为保护气时 称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体 时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气 体保护电弧焊(在国际上简称为MAG焊)。熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优 点。熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。熔化极惰性气体保护焊适用于不 锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。
(6)管状焊丝电弧焊
管状焊丝电弧焊也是利用连续送进的焊丝与工件之间燃烧的电弧为热源来进行焊接的,可以认为是熔化极气体保 护焊的一种类型。所使用的焊丝是管状焊丝,管内装有各种组分的焊剂。焊接时,外加保护气体,主要是CO。焊 剂受热分解或熔化,起着造渣保护溶池、渗合金及稳弧等作用。管状焊丝电弧焊除具有上述熔化极气体保护电弧焊的优点外,由于管内焊剂的作用,使之在冶金上更具优点。管 状焊丝电弧焊可以应用于大多数黑色金属各种接头的焊接。管状焊丝电弧焊在一些工业先进国家已得到广泛应用。
▪ 电阻焊
这是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。电阻焊包括:电阻点焊,涂焊,缝焊,高频焊,闪光对焊。由于 电渣焊更具有独特的特点,故放在后面介绍。这里主要介绍几种固体电阻热为能源的电阻焊,主要有点焊、缝焊 、凸焊及对焊等。电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔 化而实现连接的焊接方法。通常使用较大的电流。为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过 程中始终要施加压力。进行这一类电阻焊时,被焊工件的表面善对于获得稳定的焊接质量是头等重要的。因此,焊前必须将电极与工件 以及工件与工件间的接触表面进行清理。点焊、缝焊和凸焊的牾在于焊接电流(单相)大(几千至几万安培),通电时间短(几周波至几秒),设备昂贵 、复杂,生产率高,因此适于大批量生产。主要用于焊接厚度小于3mm的薄板组件。各类钢材、铝、镁等有色金属 及其合金、不锈钢等均可焊接。
▪ 高能束焊
这一类焊接方法包括:电子束焊和激光焊。
(1)电子束焊
电子束焊是以集中的高速电子束轰击工件表面时所产生的热能进行焊接的方法。电子束焊接时,由电子枪产生电子束并加速。常用的电子束焊有:高真空电子束焊、低真空电子束焊和非真空电 子束焊。前两种方法都是在真空室内进行。焊接准备时间 (主要是抽真空时间)较长,工件尺寸受真空室大小限 制。电子束焊与电弧焊相比,主要的特点是焊缝熔深大、熔宽小、焊缝金属纯度高。它既可以用在很薄材料的精密焊 接,又可以用在很厚的(最厚达300mm)构件焊接。所有用其它焊接方法能进行熔化焊的金属及合金都可以用电子 束焊接。主要用于要求高质量的产品的焊接。还能解决异种金属、易氧化金属及难熔金属的焊接。但不适于大批 量产品。
(2)激光焊
激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接。这种焊接方法通常有连续功率激光焊 和脉冲功率激光焊。激光焊优点是不需要在真空中进行,缺点则是穿透力不如电子束焊强。激光焊时能进行精确的能量控制,因而可 以实现精密微型器件的焊接。它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。
▪ 钎焊
钎焊的能源可以是化学反应热,也可以是间接热能。它是利用熔点比被焊材料的熔点低的金属作钎料,经过加热 使钎料熔化,靠毛细管作用将钎料及入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间互扩散而 形成钎焊接头。因此,钎焊是一种固相兼液相的焊接方法。钎焊加热温度较低,母材不熔化,而且也不需施加压力。但焊前必须采取一定的措施清除被焊工件表面的油污、 灰尘、氧化膜等。这是使工件润湿性好、确保接头质量的重要保证。钎料的液相线湿度高于450℃而低于母材金属的熔点时,称为硬钎焊;低于450℃时,称为软钎焊。根据热源或加热方法不同钎焊可分为:火焰钎焊、感应 钎焊、炉中钎焊、浸沾钎焊、电阻钎焊等。钎焊时由于加热温度比较低,故对工件材料的性能影响较小,焊件的应力变形也较小。但钎焊接头的强度一般比 较低,耐热能力较差。钎焊可以用于焊接碳钢、不锈钢、高温合金、铝、铜等金属材料,还可以连接异种金属、金属与非金属。适于焊 接受载不大或常温下工作的接头,对于精密的、微型的以及复杂的多钎缝的焊件尤其适用。
▪ 其它方法
这些焊接方法属于不同程度的专门化的焊接方法,其适用范围较窄。主要包括以电阻热为能源的电渣焊、高频焊 ;以化学能为焊接能源的气焊、气压焊、爆炸焊;以机械能为焊接能源的摩擦焊、冷压焊、超声波焊、扩散焊。
(1)电渣焊
如前面所述,电渣焊是以熔渣的电阻热为能源的焊接方法。焊接过程是在立焊位置、在由两工件端面与两侧水冷 铜滑块形成的装配间隙内进行。焊接时利用电流通过熔渣产生的电阻热将工件端部熔化。根据焊接时所用的电极形状,电渣焊分为丝极电渣焊、板极电渣焊和熔嘴电渣焊。电渣焊的优点是:可焊的工件厚度大(从30mm到大于1000mm),生产率高。主要用于在断面对接接头及丁字接头 的焊接。电渣焊可用于各种钢结构的焊接,也可用于铸件的组焊。电渣焊接头由于加热及冷却均较慢,热影响区宽、显微 组织粗大、韧性、因此焊接以后一般须进行正火处理。
(2)高频焊
高频焊是以固体电阻热为能源。焊接时利用高频电流在工件内产生的电阻热使工件焊接区表层加热到熔化或接近 的塑性状态,随即施加(或不施加)顶锻力而实现金属的结合。因此它是一种固相电阻焊方法。高频焊根据高频电流在工件中产生热的方式可分为接触高频焊和感应高频焊。接触高频焊时,高频电流通过与工 件机械接触而传入工件。感应高频焊时,高频电流通过工件外部感应圈的耦合作用而在工件内产生感应电流。高频焊是专业化较强的焊接方法,要根据产品配备专用设备。生产率高,焊接速度可达30m/min。主要用于制造管 子时纵缝或螺旋缝的焊接。
(3)气焊
气焊是用气体火焰为热源的一种焊接方法。应用最多的是以乙炔气作燃料的氧-乙炔火焰。由于设备简单使操作 方便,但气焊加热速度及生产率较低,热影响区较大,且容易引起较大的变形。气焊可用于很多黑色金属、有色金属及合金的焊接。一般适用于维修及单件薄板焊接。
(4)气压焊
气压焊和气焊一样,气压焊也是以气体火焰为热源。焊接时将两对接的工件的端部加热到一定温度,后再施加足 够的压力以获得牢固的接头。是一种固相焊接。气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接。
(5)爆炸焊
爆炸焊也是以化学反应热为能源的另一种固相焊接方法。但它是利用炸药爆炸所产生的能量来实现金属连接的。在爆炸波作用下,两件金属在不到一秒的时间内即可被加速撞击形成金属的结合。在各种焊接方法中,爆炸焊可以焊接的异种金属的组合的范围最广。可以用爆炸焊将冶金上不相容的两种金属焊 成为各种过渡接头。爆炸焊多用于表面积相当大的平板包覆,是制造复合板的高效方法。
(6)摩擦焊
摩擦焊是以机械能为能源的固相焊接。它是利用两表面间机械摩擦所产生的热来实现金属的连接的。摩擦焊的热量集中在接合面处,因此热影响区窄。两表面间须施加压力,多数情况是在加热终止时增大压力,使 热态金属受顶锻而结合,一般结合面并不熔化。摩擦焊生产率较高,原理上几乎所有能进行热锻的金属都能摩擦焊接。摩擦焊还可以用于异种金属的焊接。要适 用于横断面为圆形的最大直径为100mm的工件。
(7)超声波焊
超声波焊也是一种以机械能为能源的固相焊接方法。进行超声波焊时,焊接工件在较低的静压力下,由声极发出 的高频振动能使接合面产生强裂摩擦并加热到焊接温度而形成结合。超声波焊可以用于大多数金属材料之间的焊接,能实现金属、异种金属及金属与非金属间的焊接。可适用于金属 丝、箔或2~3mm以下的薄板金属接头的重复生产。
(8)扩散焊 扩散焊一般是以间接热能为能源的固相焊接方法。通常是在真空或保护气氛下进行。焊接时使两被焊工件的表面 在高温和较大压力下接触并保温一定时间,以达到原子间距离,经过原子朴素相互扩散而结合。焊前不仅需要清 洗工件表面的氧化物等杂质,而且表面粗糙度要低于一定值才能保证焊接质量。扩散焊对被焊材料的性能几乎不产生有害作用。它可以焊接很多同种和异种金属以及一些非金属材料,如陶瓷等。扩散焊可以焊接复杂的结构及厚度相差很大的工件。
2、电焊的工作原理:
电焊的基本工作原理是通过常用的220V电压或者380V的工业用电,通过电焊机里的减压器降低了电压,增强了电流,并使电能产生巨大的电弧热量融化焊条和钢铁,而焊条熔融使钢铁之间的融合性更高。电焊条的外层的药皮、CO2焊接喷出CO2气体起防止金属融化后氧化的作用(不信你把药粉敲了看能焊接不)。当然这种解释是通俗的。
3、电焊的操作规程:
1、电焊工必须经过专业训练,考试合格后并持有安全操作证方准进行独立操作(在学徒训练期间可逐步在师傅监护下进行操作)。
2、电焊工必须按规定穿着工作服和使用防护用品(包括绝热手套、绝缘胶靴、面罩)工作场所压符合安全要求。
3、工作前要详细检查电焊机是否正常,绝缘是否良好,电焊机的外壳,必须有良好的接地。、
4、电源线与二次线路必须完整,绝缘良好,不得用其它物件代替。严禁在设备、钢缆、管道、容器以及厂房金属结构上。
5、在禁火区与有易燃易爆可能性的部位或有毒的地方动火必须办理手续和完备的动火许可证,经分析合格批准后方可施工。
6、焊钳必须绝缘良好,接线要牢固且包好,避免松脱引起触电。
7、在焊接工作场所不得存放易燃易爆物品并应有防止焊渣飞落,引起其它危险的措施。
8、接线或电气设备发生故障,应由电工进行检修,其它人员禁止乱动。
9、打火前应告诉辅助人员避开弧光。
10、进行一般检修时,临时照明行灯电压应为36伏以下,在低洼潮湿地方或金属容器内焊接时,其照明电压应为12伏。
11、在容器内焊接时,需办理《容器内作业许可证》外面必须有专人监护并有良好的通风。不得同时进行电焊和气焊工作,如需要时必须采取一定的安全措施。
12、发现触电者应立即拉下电闸,并用木棒胶管等使其脱离电源,迅速进行人工呼吸,在未切断电源前,不准直接用手拉人体裸露部分。
13、严禁焊接未经清洗、置换、分析合格的装过有毒易燃易爆物品的容器、管道等以及带电带压设备。
14、在多人工作,多层作业或固定场所施焊时,应设防护屏障。
15、下雨天气不准露天焊接。必要时必须采取有效的防护措施方可进行。在低洼地方和金属容器内焊接时,除穿戴绝缘鞋、绝缘手套外,并应设有绝缘垫板。
16、在清除铁锈、焊接时,应戴防护眼镜。
17、移动电焊机时,应先切断电源。
18、高处焊接(2米以上)应办理高处作业许可证和遵守高处作业安全操作规程。
19、电焊机在有水易潮处应垫高于地面,露天放置应设防雨棚,夏季应设在通风处,使用时温度不超过60℃。
20、焊接时,工件要放稳,并有防止歪倒和坠落的措施。
21、工作中断和下班时要切断电源,整理设备场地,收好工件,熄灭火种。
22、电焊机应有专人管理,按时检查维护,电焊工应定期进行体格检查。
23、检修转动设备或进入设备内,必须事先办理检修证和进入设备作业证,联系操作工同意后,通知电工切断电源,采取安全措施,并按规定设专人监护方可施工。
『捌』 焊接有哪几种。
目前焊接有三种方法,分别为:熔焊、压焊、钎焊。
1、熔焊:加热欲接合的工件并使它的局部熔化形成熔池,熔池冷却凝固后便能接合,必要时可加入熔填物辅助。它是适合于各种金属和合金的焊接加工,整个过程不需要压力。
2、压焊:顾名思义,压焊的过程必须对焊件进行施加压力。适合于各种金属材料和部分金属材料的加工。
3、钎焊:钎料采用比母材熔点低的金属,使用液态钎料润湿母材,填充接头间隙,通过与母材互相扩散,来实现焊件的链接。
钎焊适合于各种材料的焊接加工,尤其适合于不同金属或异类材料的焊接加工。
(8)焊接的名称都有哪些扩展阅读:
焊接的能量来源:气体焰、电弧、激光、电子束、摩擦和超声波等。
焊接的使用场所:除了在工厂中使用外,焊接还可以在多种环境下进行,如野外、水下和太空。
焊接给人体可能造成的伤害包括:烧伤、触电、视力损害、吸入有毒气体、紫外线照射过度等。
无论在何处,焊接都可能给操作者带来危险,所以在进行焊接时必须采取适当的防护措施。
焊接技术的发展趋势 :
1、提高焊接生产率是推动焊接技术发展的重要驱动力。
2、提高准备车间的机械化,自动化水平是当前世界先进工业国家的重点发展方向。
3、焊接过程自动化,智能化是提高焊接质量稳定性,解决恶劣劳动条件的重要方向。
4、新兴工业的发展不断推动焊接技术的前进。
5、热源的研究与开发是推动焊接工艺发展的根本动力。
6、节能技术是普遍关注的问题。
『玖』 这种焊接的名称是什么
低温钎焊,就是用电烙铁,焊锡丝来焊接的
『拾』 焊接工艺一共分多少种其中常见的都是哪些他们是怎么定义的还有他们的英文缩写及全称都是什么
常用是电焊和气焊,还有激光焊、钎焊、热熔焊、电子束焊、爆炸焊等等
17种焊接方法介绍
1.手弧焊
手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。它是以外部涂有涂料的焊条作电极和填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。涂料在电弧热作用下一方面可以产生气体以保护电弧,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。熔渣的更重要作用是与熔化金属产生物理化学反应或添加合金元素,改善焊缝金属性能。
手弧焊设备简单、轻便,*作灵活。可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的焊接。手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。
2.钨极气体保护电弧焊
这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。焊接过程中钨极不熔化,只起电极的作用。同时由焊炬的喷嘴送进氩气或氦气作保护。还可根据需要另外添加金属。在国际上通称为TIG焊。
钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属。这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。
3.熔化极气体保护电弧焊
这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接的。
熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气体保护电弧焊(在国际上简称为MAG焊)。
熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。熔化极惰性气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。
4.等离子弧焊
等离子弧焊也是一种不熔化极电弧焊。它是利用电极和工件之间地压缩电弧(叫转发转移电弧)实现焊接的。所用的电极通常是钨极。产生等离子弧的等离子气可用氩气、氮气、氦气或其中二者之混合气。同时还通过喷嘴用惰性气体保护。焊接时可以外加填充金属,也可以不加填充金属。
等离子弧焊焊接时,由于其电弧挺直、能量密度大、因而电弧穿透能力强。等离子弧焊焊接时产生的小孔效应,对于一定厚度范围内的大多数金属可以进行不开坡口对接,并能保证熔透和焊缝均匀一致。因此,等离子弧焊的生产率高、焊缝质量好。但等离子弧焊设备(包括喷嘴)比较复杂,对焊接工艺参数的控制要求较高。
钨极气体保护电弧焊可焊接的绝大多数金属,均可采用等离子弧焊接。与之相比,对于1mm以下的极薄的金属的焊接,用等离子弧焊可较易进行。
5.管状焊丝电弧焊
管状焊丝电弧焊也是利用连续送进的焊丝与工件之间燃烧的电弧为热源来进行焊接的,可以认为是熔化极气体保护焊的一种类型。所使用的焊丝是管状焊丝,管内装有各种组分的焊剂。焊接时,外加保护气体,主要是CO2。焊剂受热分解或熔化,起着造渣保护溶池、渗合金及稳弧等作用。
管状焊丝电弧焊除具有上述熔化极气体保护电弧焊的优点外,由于管内焊剂的作用,使之在冶金上更具优点。管状焊丝电弧焊可以应用于大多数黑色金属各种接头的焊接。管状焊丝电弧焊在一些工业先进国家已得到广泛应用。
“管状焊丝”即现在所说的“药芯焊丝”——发贴者注
6.电阻焊
这是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。由于电渣焊更具有独特的特点,故放在后面介绍。这里主要介绍几种固体电阻热为能源的电阻焊,主要有点焊、缝焊、凸焊及对焊等。
电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔化而实现连接的焊接方法。通常使用较大的电流。为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过程中始终要施加压力。
进行这一类电阻焊时,被焊工件的表面善对于获得稳定的焊接质量是头等重要的。因此,焊前必须将电极与工件以及工件与工件间的接触表面进行清理。
点焊、缝焊和凸焊的牾在于焊接电流(单相)大(几千至几万安培),通电时间短(几周波至几秒),设备昂贵、复杂,生产率高,因此适于大批量生产。主要用于焊接厚度小于3mm的薄板组件。各类钢材、铝、镁等有色金属及其合金、不锈钢等均可焊接。
7.电子束焊
电子束焊是以集中的高速电子束轰击工件表面时所产生的热能进行焊接的方法。
电子束焊接时,由电子枪产生电子束并加速。常用的电子束焊有:高真空电子束焊、低真空电子束焊和非真空电子束焊。前两种方法都是在真空室内进行。焊接准备时间(主要是抽真空时间)较长,工件尺寸受真空室大小限制。
电子束焊与电弧焊相比,主要的特点是焊缝熔深大、熔宽小、焊缝金属纯度高。它既可以用在很薄材料的精密焊接,又可以用在很厚的(最厚达300mm)构件焊接。所有用其它焊接方法能进行熔化焊的金属及合金都可以用电子束焊接。主要用于要求高质量的产品的焊接。还能解决异种金属、易氧化金属及难熔金属的焊接。但不适于大批量产品。
8.激光焊
激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接。这种焊接方法通常有连续功率激光焊和脉冲功率激光焊。
激光焊优点是不需要在真空中进行,缺点则是穿透力不如电子束焊强。激光焊时能进行精确的能量控制,因而可以实现精密微型器件的焊接。它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。
9.钎焊
钎焊的能源可以是化学反应热,也可以是间接热能。它是利用熔点比被焊材料的熔点低的金属作钎料,经过加热使钎料熔化,*毛细管作用将钎料及入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间互扩散而形成钎焊接头。因此,钎焊是一种固相兼液相的焊接方法。
钎焊加热温度较低,母材不熔化,而且也不需施加压力。但焊前必须采取一定的措施清除被焊工件表面的油污、灰尘、氧化膜等。这是使工件润湿性好、确保接头质量的重要保证。
钎料的液相线湿度高于450℃而低于母材金属的熔点时,称为硬钎焊;低于450℃时,称为软钎焊。
根据热源或加热方法不同钎焊可分为:火焰钎焊、感应钎焊、炉中钎焊、浸沾钎焊、电阻钎焊等。
钎焊时由于加热温度比较低,故对工件材料的性能影响较小,焊件的应力变形也较小。但钎焊接头的强度一般比较低,耐热能力较差。
钎焊可以用于焊接碳钢、不锈钢、高温合金、铝、铜等金属材料,还可以连接异种金属、金属与非金属。适于焊接受载不大或常温下工作的接头,对于精密的、微型的以及复杂的多钎缝的焊件尤其适用。
10.电渣焊
电渣焊是以熔渣的电阻热为能源的焊接方法。焊接过程是在立焊位置、在由两工件端面与两侧水冷铜滑块形成的装配间隙内进行。焊接时利用电流通过熔渣产生的电阻热将工件端部熔化。
根据焊接时所用的电极形状,电渣焊分为丝极电渣焊、板极电渣焊和熔嘴电渣焊。
电渣焊的优点是:可焊的工件厚度大(从30mm到大于1000mm),生产率高。主要用于在断面对接接头及丁字接头的焊接。
电渣焊可用于各种钢结构的焊接,也可用于铸件的组焊。电渣焊接头由于加热及冷却均较慢,热影响区宽、显微组织粗大、韧性、因此焊接以后一般须进行正火处理。
11.高频焊
高频焊是以固体电阻热为能源。焊接时利用高频电流在工件内产生的电阻热使工件焊接区表层加热到熔化或接近的塑性状态,随即施加(或不施加)顶锻力而实现金属的结合。因此它是一种固相电阻焊方法。
高频焊根据高频电流在工件中产生热的方式可分为接触高频焊和感应高频焊。接触高频焊时,高频电流通过与工件机械接触而传入工件。感应高频焊时,高频电流通过工件外部感应圈的耦合作用而在工件内产生感应电流。
高频焊是专业化较强的焊接方法,要根据产品配备专用设备。生产率高,焊接速度可达30m/min。主要用于制造管子时纵缝或螺旋缝的焊接。
12.气焊
气焊是用气体火焰为热源的一种焊接方法。应用最多的是以乙炔气作燃料的氧-乙炔火焰。由于设备简单使用方便,但气焊加热速度及生产率较低,热影响区较大,且容易引起较大的变形。
气焊可用于很多黑色金属、有色金属及合金的焊接。一般适用于维修及单件薄板焊接。
13.气压焊
气压焊和气焊一样,气压焊也是以气体火焰为热源。焊接时将两对接的工件的端部加热到一定温度,后再施加足够的压力以获得牢固的接头。是一种固相焊接。
气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接。
14.爆*炸焊
爆*炸焊也是以化学反应热为能源的另一种固相焊接方法。但它是利用炸*药爆*炸所产生的能量来实现金属连接的。在爆*炸波作用下,两件金属在不到一秒的时间内即可被加速撞击形成金属的结合。
在各种焊接方法中,爆*炸焊可以焊接的异种金属的组合的范围最广。可以用爆*炸焊将冶金上不相容的两种金属焊成为各种过渡接头。爆*炸焊多用于表面积相当大的平板包覆,是制造复合板的高效方法。
15.摩擦焊
摩擦焊是以机械能为能源的固相焊接。它是利用两表面间机械摩擦所产生的热来实现金属的连接的。
摩擦焊的热量集中在接合面处,因此热影响区窄。两表面间须施加压力,多数情况是在加热终止时增大压力,使热态金属受顶锻而结合,一般结合面并不熔化。
摩擦焊生产率较高,原理上几乎所有能进行热锻的金属都能摩擦焊接。摩擦焊还可以用于异种金属的焊接。要适用于横断面为圆形的最大直径为100mm的工件。
16.超声波焊
超声波焊也是一种以机械能为能源的固相焊接方法。进行超声波焊时,焊接工件在较低的静压力下,由声极发出的高频振动能使接合面产生强裂摩擦并加热到焊接温度而形成结合。
超声波焊可以用于大多数金属材料之间的焊接,能实现金属、异种金属及金属与非金属间的焊接。可适用于金属丝、箔或2~3mm以下的薄板金属接头的重复生产。
17.扩散焊
扩散焊一般是以间接热能为能源的固相焊接方法。通常是在真空或保护气氛下进行。焊接时使两被焊工件的表面在高温和较大压力下接触并保温一定时间,以达到原子间距离,经过原子朴素相互扩散而结合。焊前不仅需要清洗工件表面的氧化物等杂质,而且表面粗糙度要低于一定值才能保证焊接质量。
扩散焊对被焊材料的性能几乎不产生有害作用。它可以焊接很多同种和异种金属以及一些非金属材料,如陶瓷等。
扩散焊可以焊接复杂的结构及厚度相差很大的工件。