手工电弧焊焊接电流的大小对焊接质量的影响如何
❶ 手工电弧焊时电流过大或过小会产生哪些焊接缺陷
手工电弧焊施焊时电流小,会造成焊接处焊不透,就是俗称,假焊,影响结构强度。
手工电弧焊焊接电流大,焊缝不饱满凹陷,有时可能击穿焊接材料,正式焊接前可以用边角料进行试焊接,调节好适当电流,再正式施工
❷ 烧电焊的时候电流的大小有什么影响
焊接电流指的是焊接时流经焊接回路的电流。是电焊(焊条手弧焊)的主要焊接回参数。
焊接电流答的大小直接影响焊接过程的稳定性、焊缝质量及外观成型。
焊接电流过大:焊条熔化后尾部大半根焊条发红,药皮因升温过高导致某些成分提前发生变化而降低性能。 同时药皮崩落保护效果变差。 还会导致咬边、烧穿等缺陷。飞溅大,造成焊缝热影响区晶粒粗大。焊缝力学性能下降。
焊接电流过小:引弧困难。熔池小。电弧不稳定。会造成 未熔合、未焊透、气孔、夹渣等缺陷,焊缝与母材边缘过渡不圆滑。生产效率低。
焊接电流首先根据焊条直径初步选择。再根据工件厚度、焊接位置、接头形式、环境温度、母材金属材质、电源种类(极性)、焊条类型等因素,参照焊条包装盒说明。选择适当的焊接电流参数值。
❸ 电流的大小对烧电焊有什么影响
焊接电流指的是焊接时流经焊接回路的电流。是电焊(焊条手弧焊)的内主要焊接参数。
焊接电流的大小直接影响焊接过程的稳定性、焊缝质量及外观成型。
焊接电流过大:焊条熔化后尾部大半根焊条发红,药皮因升温过高导致某些成分提前发生变化而降低性能。 同时药皮崩落保护效果变差。 还会导致咬边、烧穿等缺陷。飞溅大,造成焊缝热影响区晶粒粗大。焊容缝力学性能下降。
焊接电流过小:引弧困难。熔池小。电弧不稳定。会造成 未熔合、未焊透、气孔、夹渣等缺陷,焊缝与母材边缘过渡不圆滑。生产效率低。
焊接电流首先根据焊条直径初步选择。再根据工件厚度、焊接位置、接头形式、环境温度、母材金属材质、电源种类(极性)、焊条类型等因素,参照焊条包装盒说明。选择适当的焊接电流参数值。
❹ 手工电弧焊焊接电流大小与那些因素有关
电流取决于焊抄接材料的厚度、焊条袭规格、焊接结构,范围在
15~400安。
焊条可以在交流或直流电源下使用。并不是所有的直流焊条都能在交流电源下使用,但交流焊条通常都能在直流电源下使用。
焊接电源分为两种,直流弧焊电源和交流弧焊电源,焊条分为两大类即:酸性焊条和碱性焊条。酸性焊条用直流和交流焊接电源均可,碱性焊条必须用直流弧焊电源。其接法有两种:直流正接和直流反接,焊接过程中产生偏磁吹调换接法会有明显好转。交流焊接电源一般情况下不会产生偏磁吹。
(4)手工电弧焊焊接电流的大小对焊接质量的影响如何扩展阅读
焊条电弧焊是用手工操纵焊条进行焊接工作的,可以进行平焊、立焊、横焊和仰焊等多位置焊接。另外由于焊条电弧焊设备轻便,搬运灵活,所以说,焊条电弧焊可以在任何有电源的地方进行焊接作业。适用于各种金属材料、各种厚度、各种结构形状的焊接。
焊条电弧焊的安全特点:焊条电弧焊焊接设备的空载电压一般为50V-90V
,而人体所能承受的安全电压为30V-45V,由此可见,手工电弧焊焊接设备,会对人造成生命危险,施焊时,必须穿戴好劳保用品。
参考资料来源:搜狗网络-电弧焊
参考资料来源:搜狗网络-手工电弧焊
❺ 手工电弧焊中电流对焊缝的影响有哪些
总的原则是在保证焊缝质量的前提下,尽量使用较大的电流以提高焊接生产内率,但要避免如下容情况:
(1)电流过大,药皮失效或崩落,保护效果变差,造成气孔和飞溅,出现焊缝咬边,烧穿等缺陷。此外,还使热影响区晶粒粗大,接头的韧性下降。
(2)电流过小,则电弧不稳,易造成未焊透,未熔合,气孔和夹渣等缺陷
❻ 1, 焊接电流,电压,焊接速度对焊接质量有什么影响
焊接电流、电压、焊接速度是决定焊缝尺寸的主要能量参数。
1、焊接电流内
焊接电流增大时(其他条件容不变),焊缝的熔深和余高增大,熔宽没多大变化(或略为增大)。这是因为:
(1)电流增大后,工件上的电弧力和热输入均增大,热源位置下移,熔深增大。熔深与焊接电流近于正比关系。 (2)电流增大后,焊丝融化量近于成比例地增多,由于熔宽近于不变,所以余高增大。
(3)电流增大后,弧柱直径增大,但是电弧潜入工件的深度增大,电弧斑点移动范围受到限制,因而熔宽近于不变。
2、电弧电压
电弧电压增大后,电弧功率加大,工件热输入有所增大,同时弧长拉长,分布半径增大,因而熔深略有减小而熔宽增大。余高减小,这是因为熔宽增大,焊丝熔化量却稍有减小所致。 3、焊接速度
焊速提高时能量减小,熔深和熔宽都减小。余高也减小,因为单位长度焊缝上的焊丝金属的熔敷量与焊速成反比,熔宽则近于焊速的开方成反比。
❼ 急求焊接速度、电流、电压以及焊接线能量对焊接的影响
手工电弧焊的焊接工艺参数选择
选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要.
焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量.
1、焊接电源种类和极性的选择
焊接电源种类:交流、直流
极性选择:正接、反接
正接:焊件接电源正极,焊条接电源负极的接线方法。
反接:焊件接电源负极,焊条接电源正极的接线方法。
极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定,
飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。
2、焊条直径
可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表:
焊件厚度(mm)
2
3
4-5
6-12
>13
焊条直径(mm)
2
3.2
3.2-4
4-5
4-6
3、焊接电流的选择
选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。
(1)焊条直径 焊条直径越粗,焊接电流越大。下表供参考
焊条直径(mm)
1.6
2.0
2.5
3.2
4.0
5.0
6.0
焊接电流(A)
25-45
40-65
50-80
100-130
160-210
260-270
260-300
(2)焊接位置 平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。
(3)焊道层次
打底及单面焊双面成型,使用的电流要小一些。
碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小 左右等。
总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。
(4)电弧电压
电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。
在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。
(5)焊接速度
在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。
(6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。
❽ 焊接电流大小对焊接质量有哪些影响
电流太大则对焊件的力学性能影响较大,降低了焊件的力学性能.
查看原帖>>
❾ 手工电弧焊,电压、电流、焊接速度及电弧长短对焊缝质量的影响,以及它们之间的相互关系
电弧呈钟罩型,弧长越长下端范围越大。焊缝宽窄主要是液态金属的宽度方向铺展版的问题,权电压高、电弧作用范围大、同时熔滴过渡的铺展范围也大,因此焊缝很宽。电压决定弧长、决定电弧的作用范围,但不是线性的。电流强度决定了热输入,或者说熔化深度,以及熔滴过渡形式,从小到大一般大颗粒、射滴、射流。低电压、大电流时电弧力较大,熔池搅拌充分,熔池流动剧烈,不容易夹渣。
❿ 请问手工电弧焊,里面的推力电流,主要有什么作用,调多大比较适合,推力电流主要用在什么样的焊接。谢谢!
推力电流作用:用于控制短路电流与焊接电流的比值。比值大,则引弧容易,电弧穿透力强,但飞溅会有所增加;相反,比值小,电弧较柔和,飞溅较少,但易产生粘焊条现象。
大小调控:电弧推力调节旋钮处于指示最大值时,短路电流与焊接电流的比值最大,一般在小电流焊接时才采用;中间位置时,比值适中,适用于大多数场合;最小值时,比值最小,一般用于大电流焊接。简单说来推力电流,就是在正常焊接电流的基准上再附加的电流,无论调大调小,在正常燃弧焊接时是不体现的。
调定的焊接电流值如果比较小,在焊接时就可能容易发生粘条,而机器一旦检测到短路电压下降,就会在正常的电流值上面附加一个电流,这样电流大了,就把焊条粘附的地方加热给熔化了,甚至会在短路处发生金属汽化(爆炸),但感觉上是把焊条推开的一样,所以这个电流一般就形象的被称为推力电流了。如果焊接电流比较大,电弧气氛下温度越高,气体容易被电离产生电弧,同时电弧也不容易熄灭,在这种情况下一般就不需要推力电流了。

(10)手工电弧焊焊接电流的大小对焊接质量的影响如何扩展阅读:
手弧焊工作原理
焊接过程:手工电弧焊由焊接电源、焊接电缆、焊钳、焊条、焊件、电弧构成回路,焊接时采用焊条和工件接触引燃电弧,然后提起焊条并保持一定距离,在焊接电源提供合适电弧电压和焊接电流下电弧稳定燃烧,产生高温,焊条和焊件局部加热到融化状态。焊条端部熔化的金属和被熔化的焊件金属熔合在一起,形成熔池。在焊接中,电弧随焊条移动,熔池中的液态金属逐步冷却结晶后便形成焊缝,两焊件被焊接在一起。
在焊接中,焊条的焊芯熔化后以熔滴的形式向熔池过渡,同时焊条涂层产生一定量气体和液态熔渣。产生的气体充满在电弧和熔池周围,隔绝空气。液态熔渣比液态金属密度小,浮在熔池上面,从而起到保护熔池作用。熔池内金属冷却凝固时熔渣也随之凝固形成焊渣覆盖在焊缝表面,防止高温的焊缝金属被氧化,并且降低焊缝的冷却速度。在焊接过程中,液态金属与液态熔渣和气体间进行脱氧、去硫、去磷、去氢等复杂的冶金反应,从而使焊缝金属获得合适的化学成分和组织
