焊接方式有哪些点焊
1. 什么是点焊
点焊,是指焊接时利用柱状电极,在两块搭接工件接触面之间形成焊点的焊接方法专。点焊时,先加压属使工件紧密接触,随后接通电流,在电阻热的作用下工件接触处熔化,冷却后形成焊点。
点焊主要用于厚度4mm 以下的薄板构件冲压件焊接,特别适合汽车车身和车厢、飞机机身的焊接。但不能焊接有密封要求的容器。
点焊的技巧:
1、脚法,脚踩脚踏板能熟练以各种速度控制焊头进行上移,下移,停顿操作,加力操作。
2、手法,双手能非常灵巧地移动控制产品。
3、眼力,准确判断线是否被正确压在焊盘上,准确记住焊头落点。

(1)焊接方式有哪些点焊扩展阅读:
点焊的注意事项:
1、表面的清理工作,焊接前一定要对不锈钢板的表面就行清理,不能有杂质,油污,氧化层;这些都会影响焊点的美观效果。
2、电极的压力,焊接时的电极压力,是根据不锈钢板材的厚度来确定;薄板采用较小的电极压力;厚板需要采用较大的电极压力,才能是板材之间充分的接触,电极压力的调节还要与焊接时间和焊接电流的调节相配合。
3,焊接时间,根据焊点要求的不同,焊接时间的调节也是不同的,工频交流电阻焊机的焊接时间是按周波(一周波=0.02秒)来计算的。
2. 焊条点焊的方法
焊条使用方法有多来种,自有平焊、立焊、仰焊、或点焊。
点焊也是焊工师傅们最常用的一种焊法,点焊要根据材质性能来选择匹配的焊条。
以普通结构钢为例,要选择J422焊条,根据固件的厚度来选择相应直经的焊条。
如焊接两个薄铁圆管,就要使用点焊法,首先把焊接件两边打磨干净,把有油污和生锈的除掉,点焊时电流不要调大,以免击穿焊件,在圆管相应处先点焊几处,以防走形,点火要准,熄火要稳,一弧压着一弧焊,焊条溶留时间要灵活掌握。
焊完去掉渣皮后,管件焊口波纹状平整光滑。
3. 点焊方法技巧
点 焊 原 理
是指焊接时利用柱状电极,在两块搭接工件接触面之间形成焊点的焊接方法。
点焊时,先加压使工件紧密接触,随后接通电流,在电阻热的作用下工件接触处熔化,冷却后形成焊点。
点焊接头形式
1
点焊主要应用方面
(1) 薄板冲压件搭接,如汽车驾驶室、车厢、收割机鱼鳞筛片等。
(2) 薄板与型钢构槊和蒙皮结构,如车厢侧墙和顶棚、拖车厢板、联合收割机漏斗等。
(3) 筛网和空间构架及交叉钢筋等。
1
点 焊 特 点
(1) 点焊时对连接区的加热时间很短,焊接速度快。
(2) 点焊只消耗电能,不需要填充材料或焊剂、气体等。
(3) 点焊质量主要由点焊机保证。操作简单,机械化、自动化程度高,生产率高。
(4) 劳动强度低,劳动条件好。
(5) 由于焊接通电是在很短时间内完成的,需要用大电流以及施加压力,所以过程的程序控制较复杂,焊机电容量大,设备的价格较高。
(6) 对焊点进行无损探伤较困难。
1
点 焊 操 作
焊接前要将工件表面清理干净,常用的清除疗法是酸洗清除,即先在加热的浓度为10%的硫酸中酸洗,然后在热水中洗净。 具体焊接过程如下:
(1) 将工件接头送入点焊机的上、下电极之间并夹紧;
(2) 通电,使两个工件的接触表而受热,局部熔化,形成熔核;
(3) 断电后保持压力,使熔核在压力作用下冷却凝固,形成焊点;
(4) 去除压力,取出工件。
清理的不好的焊件点焊时,焊件的加热过程
1
点焊安全注意事项
(1) 焊机的脚踏开关应有牢固的防护罩,防止意外开动。
(2) 作业点应设有防止工作火花飞溅的挡板。
(3) 施焊时焊工应带平光防护眼镜。
(4) 焊机放置的场所应保持干燥,地面应铺防滑板。
(5) 焊接工作结束后应切断电源,冷却水开关应延长10s再关闭,在气温低时还应排除水路中的积水,防止冻结。
4. 焊接方法有哪些
焊接或称熔接、镕接,是一种以加热或加压方式接合金属或其他热塑性材料如塑料的制造工艺及技术。
金属焊接方法有钎焊,熔焊、压焊三大类。
钎焊是采用比母材熔点低的金属材料作钎料,将焊件和钎料加热到高于钎料熔点,低于母材熔化温度,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散实现连接焊件的方法。钎焊变形小,接头光滑美观,适合于焊接精密、复杂和由不同材料组成的构件,如蜂窝结构板、透平叶片、硬质合金刀具和印刷电路板等。钎焊前对工件必须进行细致加工和严格清洗,除去油污和过厚的氧化膜,保证接口装配间隙。间隙一般要求在 0.01~0.1毫米之间。较之熔焊,钎焊时母材不熔化,仅钎料熔化;较之压焊,钎焊时不对焊件施加压力。钎焊形成的焊缝称为钎缝。钎焊所用的填充金属称为钎料。
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
具体方法包括气焊,电(弧)焊,压焊,电渣焊,电阻焊,气体保护焊,埋弧焊,闪光焊,冷焊等等。
5. 点焊方法哪些分类啊
点焊方法分抄为:双面单点焊、单面单点焊、单面双点焊、双面双点焊、多点焊。
1. 双面单点焊
所有的通用焊机均采用这个方案。从焊件两侧馈电,适用于小型零件和大型零件周边各焊点的焊接。
2. 单面单点焊
当零件的一侧电极可达性很差或零件较大、二次回路过长时,可采用这个方案。从焊件单侧馈电,需考虑另一侧加铜垫以减小分流并作为反作用力支点。
3. 单面双点焊
从一侧馈电时尽可能同时焊两点以提高生产率。单面馈电往往存在无效分流现象,浪费电能,当点距过小时将无法焊接。在某些场合,如设计允许,在上板二点之间冲一窄长缺口可使分流电流大幅下降。
4. 双面双点焊
其唯一不足之处是须制作二个变压器,分别置于焊件两侧,这种方案亦称推挽式点焊。两变压器的通电需按极性进行。
5. 多点焊
当零件上焊点数较多,大规模生产时,常采用多点焊方案以提高生产率。目前一般采用一组变压器同时焊二或四点。一台多点焊机可由多个变压器组成。可采用同时加压同时通电、同时加压分组通电和分组加压分组通电三种方案。可根据生产率、电网容量来选择合适方案。
6. 焊接的方法可分为哪几大类各有什么特点
1、熔焊——加热欲接合之工件使之局部熔化形成熔池,熔池冷却凝固后便接合,必要时可加入熔填物辅助,它是适合各种金属和合金的焊接加工,不需压力。
2、压焊——焊接过程必须对焊件施加压力,属于各种金属材料和部分金属材料的加工。
3、钎焊——采用比母材熔点低的金属材料做钎料,利用液态钎料润湿母材,填充接头间隙,并与母材互相扩散实现链接焊件。适合于各种材料的焊接加工,也适合于不同金属或异类材料的焊接加工。

(6)焊接方式有哪些点焊扩展阅读:
焊接防范措施:
1、焊接切割作业时,将作业环境10M范围内所有易燃易爆物品清理干净,应注意检查作业环境的地沟、下水道内有无可燃液体和可燃气体,以及是否有可能泄漏到地沟和下水道内可燃易爆物质,以免由于焊渣、金属火星引起灾害事故。
2、高空焊接切割时,禁止乱扔焊条头,对焊接切割作业下方应进行隔离,作业完毕应做到认真细致的检查,确认无火灾隐患后方可离开现场。
3、应使用符合国家有关标准、规程要求的气瓶,在气瓶的贮存、运输、使用等环节应严格遵守安全操作规程。
4、对输送可燃气体和助燃气体的管道应按规定安装、使用和管理,对操作人员和检查人员应进行专门的安全技术培训。
5、焊补燃料容器和管道时,应结合实际情况确定焊补方法。实施置换法时,置换应彻底,工作中应严格控制可燃物质的含影实施带压不置换法时,应按要求保持一定的电压。工作中应严格控制其含氧量。要加强检测,注意监护,要有安全组织措施。
7. 焊接方法有哪些详细的
常用焊接方法及特点
--------------------------------------------------------------------------------
一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?
钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。
根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。
(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。
(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。
钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。
二、电弧焊的分类有哪些,有什么优点?
利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。
三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?
(1)焊接接头由焊缝金属和热影响区组成。
1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。
2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。
(2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。
1)熔合区 位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。
2)过热区 紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。
3)正火区 加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。
4)部分相变区 加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。
四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合?
电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。
电阻焊分为点焊、缝焊和对焊3种形式。
(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。
点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。
(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。
缝焊适宜于焊接厚度在3 mm以下的薄板搭接,主要应用于生产密封性容器和管道等。
(3)对焊:根据焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。
1)电阻对焊 焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。
电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,影响焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。
2)闪光对焊 焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度很大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。继续移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并继续加压,使焊件焊合。
闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊接受力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,可以焊接0.01 mm的金属丝,也可以焊接直径500 mm的管子及截面为20 000 mm2的板材。
五、激光焊的基本原理是什么?有何特点及用途?
激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。
激光焊具有如下特点:
1)激光束能量密度大,加热过程极短,焊点小,热影响区窄,焊接变形小,焊件尺寸精度高;
2)可以焊接常规焊接方法难以焊接的材料,如焊接钨、钼、钽、锆等难熔金属;
3)可以在空气中焊接有色金属,而不需外加保护气体;
4)激光焊设备较复杂,成本高。
激光焊可以焊接低合金高强度钢、不锈钢及铜、镍、钛合金等;异种金属以及非金属材料(如陶瓷、有机玻璃等);目前主要用于电子仪表、航空、航天、原子核反应堆等领域。
六、电子束焊的基本原理是什么?有何特点及用途?
电子束焊利用在真空中利用聚焦的高速电子束轰击焊接表面,使之瞬间熔化并形成焊接接头。
电子束焊具有以下特点:
1)能量密度大,电子穿透力强;
2)焊接速度快,热影响取消,焊接变形小;
3)真空保护好,焊缝质量高,特别适用于活波金属的焊接。
电子束焊用于焊接低合金钢、有色金属、难熔金属、复合材料、异种材料等,薄板、厚板均可。特别适用于焊接厚件及要求变形很小的焊件、真空中使用器件、精密微型器件等。参考资料:http://soft.maihanji.com/temp/temparticle/show.asp?id=222
8. 有哪些焊接方法代号
检验方式符号、其他要求和说明等标在 尾部右侧
焊接代号
AW —— ARC WELDING——电弧焊
AHW —— atomic hydrogen welding——原子氢焊
BMAW —— bare metal arc welding——无保护金属丝电弧焊 CAW —— carbon arc welding——碳弧焊
CAW-G —— gas carbon arc welding——气保护碳弧焊
CAW-S —— shielded carbon arc welding——有保护碳弧焊 CAW-T —— twin carbon arc welding——双碳极间电弧焊 EGW —— electrogas welding——气电立焊
FCAW —— flux cored arc welding——药芯焊丝电弧焊
FCW-G —— gas-shielded flux cored arc welding——气保护 药芯焊丝电弧焊
FCW-S —— self-shielded flux cored arc welding—— 888真 人自保护药芯焊丝电弧焊
GMAW —— gas metal arc welding——熔化极气体保护电弧焊 GMAW-P —— pulsed arc——熔化极气体保护脉冲电弧焊
GMAW-S —— short circuiting arc——熔化极气体保护短路过 度电弧焊
GTAW —— gas tungsten arc welding——钨极气体保护电弧焊 GTAW-P —— pulsed arc——钨极气体保护脉冲电弧焊
MIAW —— magnetically impelled arc welding——磁推力电弧焊
PAW —— plasma arc welding——等离子弧焊
SMAW —— shielded metal arc welding——焊条电弧焊
SW —— stud arc welding——螺栓电弧焊
SAW —— submerged arc welding——埋弧焊
SAW-S —— series ——横列双丝埋弧焊
RW —— RWSISTANCE WELDING——电阻焊
FW —— flash welding——闪光焊
RW-PC —— pressure controlled resistance welding——压力 控制电阻焊
PW —— projection welding——凸焊
RSEW —— resistance seam welding——电阻缝焊
RSEW-HF —— high-frequency seam welding——高频电阻缝焊 RSEW-I —— inction seam welding——感应电阻缝焊
RSEW-MS —— mash seam welding——压平缝焊
RSW —— resistance spot welding——点焊
UW —— upset welding——电阻对焊
UW-HF —— high-frequency ——高频电阻对焊
UW-I —— inction ——感应电阻对焊
SSW —— SOLID STATE WELDING——固态焊
CEW —— co-extrusion welding——
CW —— cold welding——冷压焊
DFW —— diffusion welding——扩散焊
HIPW —— hot isostatic pressure diffusion welding——热 等静压扩散焊
EXW —— explosion welding——爆炸焊
FOW —— forge welding——锻焊
FRW —— friction welding——摩擦焊
FRW-DD —— direct drive friction welding——径向摩擦焊 FSW —— friction stir welding——搅拌摩擦焊
FRW-I —— inertia friction welding——惯性摩擦焊
HPW —— hot pressure welding——热压焊
ROW —— roll welding——热轧焊
USW —— ultrasonic welding——超声波焊
S —— SOLDERING ——软钎焊
DS —— dip soldering——浸沾钎焊
FS —— furnace soldering——炉中钎焊
IS —— inction soldering——感应钎焊
IRS —— infrared soldering——红外钎焊
INS —— iron soldering——烙铁钎焊
RS —— resistance soldering——电阻钎焊
TS —— torch soldering——火焰钎焊
UUS —— ultrasonic soldering——超声波钎焊
WS —— wave soldering——波峰钎焊
B —— BRAZING ——软钎焊
BB —— block brazing——块钎焊
DFB —— diffusion brazing——扩散焊
DB —— dip brazing——浸沾钎焊
EXB —— exothermic brazing——反应钎焊
FB —— furnace brazing——炉中钎焊
IB —— inction brazing——感应钎焊
IRB —— infrared brazing——红外钎焊
RB —— resistance brazing——电阻钎焊
TB —— torch brazing——火焰钎焊
TCAB —— twin carbon arc brazing——双碳弧钎焊 OFW —— OXYFUEL GAS WELDING——气焊
AAW —— air-acetylene welding——空气乙炔焊
OAW —— oxy-acetylene welding——氧乙炔焊
OHW —— oxy-hydrogen welding——氢氧焊
PGW —— pressure gas welding——气压焊
OTHER WELDING AND JOINING——其他焊接与连接方法 AB —— adhesive bonding——粘接
BW —— braze welding——钎接焊
ABW —— arc braze welding——电弧钎焊
CABW —— carbon arc braze welding——碳弧钎焊 EBBW —— electron beam braze welding——电子束钎焊
EXBW —— exothermic braze welding——热反应钎焊
FLB —— flow brazing——波峰钎焊
FLOW —— flow welding——波峰焊
LBBW —— laser beam braze welding——激光钎焊
EBW —— electron beam welding——电子束焊
EBW-HV —— high vacuum——高真空电子束焊
EBW-MV —— medium vacuum——中真空电子束焊
EBW-NV —— non vacuum——非真空电子束焊
ESW —— electroslag welding——电渣焊
ESW-CG —— consumable guide eletroslag welding——熔嘴电 渣焊
IW —— inction welding——感应焊
LBW —— laser beam welding——激光焊
PEW —— percussion welding——冲击电阻焊
TW —— thermit welding——热剂焊
THSP —— THERMAL SPRAYING——热喷涂
ASP —— arc spraying——电弧喷涂
FLSP —— flame spraying——火焰喷涂
FLSP-W —— wire flame spraying——丝材火焰喷涂
HVOF —— high velocity oxyfuel spraying——高速氧燃气喷 涂
PSP —— plasma spraying——等离子喷涂
VPSP-W —— vacuum plasma spraying——真空等离子喷涂 TC —— THERMAL CUTTING——热切割
OC —— OXYGEN CUTTING——气割
OC-F —— flux cutting——熔剂切割
OC-P —— metal powder cutting——金属熔剂切割
OFC —— oxyfuel gas cutting——氧燃气切割
CFC-A —— oxyacetylene cutting——氧乙炔切割
CFC-H —— oxyhydrogen cutting——氢氧切割
CFC-N —— oxynatural gas cutting——氧天然气切割
CFC-P —— oxypropanne cutting——氧丙酮切割
OAC —— oxygen arc cutting——氧气电弧切割
OG —— oxygen gouging——气刨
OLC —— oxygen lance cutting——氧矛切割
AC —— ARC CUTTING——电弧切割
CAC —— carbon arc cutting——碳弧切割
CAC-A —— air carbon arc cutting——空气碳弧切割
GMAC —— gas metal arc cutting——熔化极气体保护电弧切割 GTAC —— gas tungsten arc cutting——钨极气体保护电弧切 割
PAC —— plasma arc cutting——等离子弧切割
SMAC —— shielded metal arc cutting——焊条电弧切割 HIGH ENERGY BEAM CUTTING——高能束切割
6/7页
EBC —— electron beam cutting——电子束切割 LBC —— laser beam cutting——激光切割 LBC-A —— air ——空气激光切割
LBC-EV —— evaporative ——蒸气激光切割 LBC-IG —— inert gas——惰性气体激光切割 LBC-O —— oxygen ——氧气激光切割
