fcaw焊接用什么气体
1. 万能焊枪用什么气体
根据焊接不同的材料选择不同的气体。如果是中低强度钢材的焊接,那么版就用纯的二氧化碳来保权护;高强刚材的焊接可以用混合气体,但是其右一定的毒性;不锈钢和铝材就用氩气来保护。
焊枪利用焊机的高电流,高电压产生的热量聚集在焊枪终端,熔化焊丝,融化的焊丝渗透到需焊接的部位,冷却后,被焊接的物体牢固的连接成一体。焊枪功率的大小,取决于焊机的功率和焊接材质。焊枪焊接效果合格,焊接安全,速度快,焊枪性能可靠,维护简单,调整方便,焊枪不用电,节约钢材,设备投资小等优点。焊枪气压焊能够轻松完成闪光焊和电渣焊两套设备的焊接工作,且质量和效益优于后者两套设备。
工作注意事项
(1)焊枪插电后,绝对不要去触碰枪头,一不小心碰到绝对会烫伤起水泡,需赶快冲水;
(2)焊枪头使用久了会有杂物,需使用擦拭布清理保持清洁
(3)焊枪至于焊枪架时,依然需小心别触碰到架旁的物体;
(4)焊枪使用完毕,需拔掉插头等待10分钟冷却后才可收起来。
2. 焊接用的气体有哪些,其性质和用途如何
焊接用的气体按照焊接方式可以分为如下:
一、气焊焊接用的气体有氧气、乙炔
助燃气体主要为氧气,可燃气体主要采用乙炔、液化石油气等。所使用的焊接材料主要包括可燃气体、助燃气体、焊丝、气焊熔剂等。特点设备简单不需用电。设备主要包括氧气瓶、乙炔瓶(如采用乙炔作为可燃气体)、减压器、焊枪、胶管等。由于所用储存气体的气瓶为压力容器、气体为易燃易爆气体,所以该方法是所有焊接方法中危险性最高的之一。
二、氩弧焊焊接用的保护气体有氩气、或者氦气。
氩弧焊焊接用常用的惰性气体是氩气。它是一种无色无味的气体,在空气的含量为0.935%(按体积计算),氩的沸点为-186℃,介于氧和氦的沸点之间。氩气是氧气厂分馏液态空气制取氧气时的副产品。
氩气是一种比较理想的保护气体,比空气密度大25%,在平焊时有利于对焊接电弧进行保护,降低了保护气体的消耗。氩气是一种化学性质非常不活泼的气体,即使在高温下也不和金属发生化学反应,从而没有了合金元素氧化烧损及由此带来的一系列问题。氩气也不溶于液态的金属,因而不会引起气孔。氩是一种单原子气体,以原子状态存在,在高温下没有分子分解或原子吸热的现象。氩气的比热容和热传导能力小,即本身吸收量小,向外传热也少,电弧中的热量不易散失,使焊接电弧燃烧稳定,热量集中,有利于焊接的进行。
氩气的缺点是电离势较高。当电弧空间充满氩气时,电弧的引燃较为困难,但电弧一旦引燃后就非常稳定。
三、二氧化碳气体保护焊接用的二氧化碳气体
二氧化碳常温下是一种无色无味、不可燃的气体,密度比空气大,略溶于水,与水反应生成碳酸。
二氧化碳气体保护电弧焊(简称CO2焊)是以二氧化碳气为保护气体,进行焊接的方法。(有时采用CO2+Ar的混合气体)。在应用方面操作简单,适合自动焊和全方位焊接。焊接时抗风能力差,适合室内作业。由于它成本低,二氧化碳气体易生产,广泛应用于各大小企业。由于二氧化碳气体的0热物理性能的特殊影响,使用常规焊接电源时,焊丝端头熔化金属不可能形成平衡的轴向自由过渡,通常需要采用短路和熔滴缩颈爆断、因此,与MIG焊自由过渡相比,飞溅较多。但如采用优质焊机,参数选择合适,可以得到很稳定的焊接过程,使飞溅降低到最小的程度。由于所用保护气体价格低廉,采用短路过渡时焊缝成形良好,加上使用含脱氧剂的焊丝即可获得无内部缺陷的高质量焊接接头。因此这种焊接方法目前已成为黑色金属材料最重要焊接方法之一。
3. 氩弧焊需要用什么气体
非熔化极氩弧焊是电弧在非熔化极(通常是钨极)和工件之间燃烧,在焊接电弧周围流版过一种不和金属起化学反应权的惰性气体(常常用氩气),形成一个保护气罩,使钨极端头,电弧和熔池及已处于高温的金属不与空气接触,能防止氧化和吸收有害气体。从而形成致密的焊接接头,其力学性能非常好
4. 氩弧焊用那些气体,分别作用
用氩气作为保护气体,因氩气是惰性气体,不易和其他气体发生反应,所以在电焊时在熔池傍边喷射氩气使熔池当中的融化金属不至于在高温下和氧气发生氧化反应,从而保证了焊缝的焊接质量。
5. 氩弧焊所用的气体
乙炔和氧气
6. 氩弧焊用的是什么气体
用电弧产生的高温进行焊接是一种常用的焊接技术。但高温下被焊接的金属也很容易被专快速氧化,这大大影属响了焊接质量。普通的电焊条都是焊药包裹着铁丝。其中的焊药的就是在高温下产生很稳定的气体氮气,排开空气,保护焊接点不被氧化。近些年出现的氩弧焊,是在焊枪上接稳定的氩气瓶输送的氩气。由于氩气非常稳定,可以很好的保护焊点不被氧化。
7. 二保焊用的什么气体
作业前,二氧化碳气体应预热15min。开气时,操作人员必须站在瓶嘴的侧面。 2. 作业前,应检查并确认焊丝的进给机构、电线的连接部分、二氧化碳气体的供应系统及 冷却水循环系统合乎要求,焊枪冷却水系统不得漏水。 3. 二氧化碳气体瓶宜放阴凉处,其最高温度不得超过30℃。 4. 二氧化碳气体预热器端的电压,不得大于36V,作业后,应切断电源。 5. 焊接操作及配合人员必须按规定穿戴劳动防护用品。并必须采取防止触电、高空坠落、 瓦斯中毒和火灾等事故的安全措施。 6. 现场使用的电焊机,应设有防雨、防潮、防晒的机棚,并应装设相应的消防器材。 7. 高空焊接或切割时,必须系好安全带,焊接周围和下方应采取防火措施,并应有专人监 护。 8. 当需施焊受压容器、密封容器、油桶、管道、沾有可燃气体和溶液的工作时,应先消除 容器及管道内压力,消除可燃气体和溶液,然后冲洗有毒、有害、易燃物质;对存有残余油脂的容器,应先有蒸汽、碱水冲洗,并打开盖口,确认容器清洗干净后,再灌满清水方可进行焊接。在容器内焊接应采取防止触电、中毒和窒息的措施。焊、割密封容器应留出气孔,必要时在进、出气口处装设通风设备;容器内照明电压不得超过12V,焊工与焊件间应绝缘;容器处应设专人监护。严禁在已喷涂过油漆和塑料的容器内焊接。 9. 对承压状态的压力容器及管道、带电设备、承载结构的受力部位和装有易燃、易爆物品 的容器严禁进行焊接和切割。 10. 焊接铜、铝、锌、锡等有色金属时,应通风良好,焊接人员应戴防毒面罩、呼吸滤清器 或采取其他防毒措施。 11. 当消除焊缝焊渣时,应戴防护眼镜,头部应避开敲击焊渣飞溅方向。 12. 雨天不得在露天电焊。在潮湿地带作业时,操作人员应站在铺有绝缘物品的地方,并应 穿绝缘鞋。
8. 二保焊用什么气体焊接,效果更好
用%80的二氧化碳气体+%20的氩气,称为混合气体,用来焊接效果更好些,颜色光亮,飞溅小,焊缝美观。
CO2气保焊操作
1 起弧
(1)保持干伸长不变。
(2)倒退引弧法,在焊道前端10—20mm处引弧。
(3)接头处磨薄,防止接头未熔和。
2 收弧
(1)保持干伸长不变。
(2)在熔池边缘处收弧。
起弧与收弧工艺,虽然说CO2的起弧与收弧工艺简单,但若达到一定的质量要求,掌握规范的操作工艺是很必要的。
起弧工艺:起弧之前在焊丝端头与母材之间保持一定距离的情况下,按下焊枪开关。在起弧时,保持干伸长度稳定。起弧处由于工件温度较低,又无法象手工焊那样拉长电弧预热,所以应采用倒退引弧法,使焊道充分熔和。
收弧工艺:CO2焊收弧时,应保持干伸长度不变,并把燃烧点拉到熔池边缘处停弧,焊机自完成回烧、消球、延时气保护的收弧过程。
3 操作方法
(1)左焊法(右左):余高小,宽度大,飞溅小,便于观察焊缝,焊接过程稳定,气保效果好(有色金属必须用左焊法),但溶深较浅。
(2)右焊法(左右):余高大,宽度小,飞溅大,便于观察熔池,熔深深。
(3)运枪方法:锯齿形摆抢。
(4)平角焊不摆或小幅摆动。
(5)立角向上焊,采用三角形运枪。
(6)焊枪过渡:熔池两边停留,在熔池前1/3处过渡。
(7)枪角度:垂直于焊道,沿运枪方向成80—90°角。
(8)试板:间隙2.0—2.5mm,起弧点略小于收弧点。无钝边,反变形1°。
(9)予防缺陷:
防夹角不熔—烧透夹角。 防层间不熔—注意枪角度。
焊接参数
1 电流、电压
U2=14+0.05I2
焊接电流应根据母材厚度、接头形式以及焊丝直径等,正确选择焊接电流。短路过渡时,在保证焊透的前提下,尽量选择小电流,因为当电流太大时,易造成溶池翻滚,不仅飞溅大,成型也非常差。
焊接电压必须与电流形成良好的配合。焊接电压过高或过低都会造成飞溅,焊接电压应伴随焊接电流增大而提高,应伴随焊接电流减小而降低,最佳焊接电压一般在1-2V之间,所以
焊接电压应细心调试。
电流过大:弧长短、飞溅大,有顶手感觉,余高过大,两边熔合不好。
电压过高:弧长长、飞溅稍大,电流不稳,余高过小,焊逢宽,引弧易烧导电嘴。
2 干伸长度
焊丝伸出导电咀的长度为干伸长度,一般经验公式为10倍的焊丝直径I=10d。规范大时,略大。规范小时,略小。
干伸过长:焊丝伸出长度太长时,焊丝的电阻热越大,焊丝熔化速度加快,易造成焊丝成段熔断,飞溅大,熔深浅,电弧燃烧不稳。同时气保护效果不好。
干伸过短:易烧导电嘴。同时,导电嘴发热易夹丝。飞溅物易堵塞喷嘴。熔深
深。
电流 200A以下 200
~350A 350~500A
干伸长度 10~15mm 15~20mm 20~25mm
3 气体流量 L=(10—12)d L/min
过大:产生紊流,造成空气侵入,产生气孔。
过小:气保护不好。
风速≤2m/s 时不受影响。
风速≥2m/s 时应采取措施。
①加大气体流量。 ② 采取挡风措施。
注意:当发生漏气时,会使焊缝出现气孔,必须处理漏气点,不能用加大流量的方法补充。
4 电弧力
当不同板厚、不同位置、不同规范,不同焊丝,选择不同的电弧力。
过大:电弧硬、飞溅大。
过小:电弧软、飞溅小。
5 压紧力
过紧:焊丝变形,送丝不稳。
过松:焊丝打滑,送丝慢。
6 电源极性
直流反极性:熔深大,飞溅小,焊缝成型好电弧稳定,且焊缝含氢量低。 直流正极性:在相同条件下,焊丝熔化速度快。是反极性的1.6倍,熔深浅,余高大,飞溅很大。在堆焊、铸铁补焊、高速焊时采用。
7 焊接速度
焊接速度对焊缝内部与外观的质量都有重要影响,当电流电压一定时:
焊速过快:熔深、熔宽、余高减小,成凸型或驼峰焊道,焊趾部咬肉。焊速过快时,会使气体保护作用受到破坏,易产生气孔。同时焊逢的冷却速度也会相应加快,因而降低了焊逢金属的塑性和韧性。并会使焊逢中间出现一条棱,造成成型不良。
焊速过慢:熔池变大,焊道变宽,焊趾部满溢。焊速慢易排出熔池中的气体。因过热造成焊缝金属组织粗大或烧穿。
选择焊接参数应按以下条件:焊缝外型美观,没有烧穿、咬边、气孔、裂纹等缺陷。熔深控制在合适的范围内。焊接过程稳定,飞溅小。焊接时听到沙...沙的声音。同时应具备最高的生产率。
CO2焊的焊接规范主要包括:焊接电流、电弧电压、焊接速度和气体流量。这些参数对焊丝的加热和熔化及焊缝成型都有很大影响。
9. 焊接用什么气体
焊接保护气体可以是单元气体,也有二元,三元混合气。采用焊接保护气的目的在于提高焊缝质量,减少焊缝加热作用带宽度,避免材质氧化。
单元气体有氩气,二氧化碳,二元混合气有氩和氧,氩和二氧化碳,氩和氦,氩和氢混合气。三元混合气有氦,氩,二氧化碳混合气。应用中视焊材不同选择不同配比的焊接混合气。
(9)fcaw焊接用什么气体扩展阅读
从技术角度来看,仅通过改变保护气体成分,就能对焊接过程产生下列5大重要影响:
(1)提高焊丝熔敷率
与传统纯二氧化碳相比,富氩混合气通常带来更高的生产效率。氩气含量应该超过85%以实现射流过渡。当然,提高焊丝熔敷率要求选择合适的焊接参数,焊接效果通常是多参数共同作用的结果,不合适的焊接参数选择通常会降低焊接效率,增加焊后清渣工作。
(2)控制飞溅以及减少焊后清渣
氩气的低电离势使电弧稳定性提高,相应的减少了飞溅。最近的焊接电源新技术对CO2焊接的飞溅进行了控制,而在同样条件下,如果使用混合气,能够进一步减少飞溅和扩大焊接参数窗口。
(3)控制焊缝成形,减少过度焊接
CO2焊缝倾向于向外突出,导致了过度焊接,使焊接成本增加。氩混气易于控制焊缝成形,避免了焊丝浪费。
(4)提高焊接速度
通过使用富氩混合气,即使增加焊接电流,依然能够保持非常好地控制飞溅。这样带来的优势是焊接速度的提高,尤其是对于自动焊接,极大地提高了生产效率。
(5)控制焊接烟尘
在同样的焊接操作参数下,富氩混合气相比二氧化碳大大减少了焊接烟尘。相比投资硬件设备来改善焊接操作环境,采用富氩混合气是一个附带的减少源头污染的优势。
综合上可以看到,通过选择合适的焊接保护气体,可以提高焊接质量,降低焊接总成本,提高焊接效率。
10. fcaw是什么焊接方法
FCAW是Fluxed-coredarcwelding的缩写,中文译为:药芯焊丝电弧焊。它是使用药芯焊丝作为焊接材料的一种熔化极气体保护焊或自保护焊法,在我国管道施工中用于全位置半自动下向焊焊接工艺。
1992年,美国林肯公司向管道局推出半自动FCAW下向焊接工艺的同时,重点推出了两种焊接设备组合:林肯DC—400弧焊电源+LN23P送丝机和SAE-400柴油发电机式弧焊电源+LN23P送丝机。1995年在突尼斯环城管线使用半自动FCAW下向焊接工艺成功后,1996年在库鄯线平原地段进行了推广。苏丹工程、利比亚工程、涩宁兰工程、兰成渝工程、陕京二线工程施工中,管线热焊、填充、盖面焊基本上采用了该焊接工艺。西气东输工程2500公里左右也基本上采用此工艺,余下的1500公里采用自动焊接完成。近10年的工程实践证明,半自动FCAW下向焊接工艺,在大口径长输管道施工中得到了大力推广和使用。
与半自动CO2气体保护下向焊接工艺相比,半自动FCAW下向焊接具有工艺性能优良、电弧稳定、生产效率高、飞溅小、焊缝成型美观、钢种与空间位置适应性好、抗风能力强等优点。与传统的下向焊条电弧焊工艺相比,它把热焊、填充焊、盖面焊焊口一次合格率平均提高到10%左右,生产率提高1.25至1.5倍左右。与自动焊相比,它具有设备投资少、成本回收快、综合成本低等优点。焊工培训时间短,易掌握。在十几年的工程施工中焊接质量稳定,经过X射线拍片检查,焊口一次合格率平均在95%至98%左右。采用半自动FCAW下向焊接工艺在管道施工中达到了国内外工程业主提出的“四高”标准,完全适合于各种管径管道全位置下向焊接工艺要求。所以,备受业主、监理、施工单位的青睐。
半自动FCAW下向焊接的电弧扩散角较大,造成了电弧电压径向能量梯度大,幅度减小,分布趋于平缓,熔深较浅,所以不太适于深层熔透要求场合下的焊接。但是,其焊缝成型系数大、飞溅率低、焊缝平缓圆滑,适用于管道下向焊接工艺。
在半自动FCAW下向焊接工艺中,有7个主要工艺参数是在焊接中最受关注的问题。这7个工艺参数分别是电弧电压、电流、送丝速度、焊丝角度、焊接速度、推力电流和焊丝的杆伸长度。在7种工艺参数完全匹配时,才能实现稳定的焊接过程,才能实现小飞溅、焊缝成型好、生产效率高的优越性。
在焊接过程中,电弧电压是自保护的重要参数之一。在管道全位置半自动FCAW下向焊工艺中,电弧电压一般控制在18~22伏之间。如果电压过高,则熔渣太稀,不易存留在焊缝表面,失去其焊缝金属表面保护作用,产生气孔。电压过低,则电弧过程失稳、易顶丝,且焊道鼓、飞溅增大,热焊、填充焊时出现夹角,产生夹渣缺陷。
推力电流在焊接过程中往往容易被忽视,因为在焊接工艺参数中,它的变化反应最不明显,但推力电流在焊接中却起着很大作用。因为熔滴过渡会频繁断路不同的焊条直径、焊条牌号、焊丝直径、焊丝牌号、焊缝空间位置及不同的操作者都会对推力电流有不同的要求。推力电流越小,电弧越软,但飞溅小,适合于小电流下手焊操作。推力电流越大,电弧越硬,但飞溅稍大,适用于全位置焊接,并利于电弧连续稳定。
焊丝的杆伸长度,即焊丝在导电嘴与工件产生的电弧之间伸出的长度。杆伸长度越长,则电弧电压越低;杆伸长度越短,则电弧电压越高。一般杆伸长度应控制在19~25.4毫米之间为宜。如果杆伸长度小于19毫米,则因电弧电压增高,焊丝钢皮电阻热增大,焊丝因电阻热增加变化导致送丝在导电嘴受阻,减缓送丝速度,又因电阻热增高,焊丝药芯颗粒细化,也能造成自保护压力下降和熔池冷凝快产生气孔。如果杆伸长度大于25.4毫米,电弧电压随之降低,常伴随着焊丝爆断,出现顶丝、穿丝现象。一般焊丝杆伸长度小于19毫米,常常发生在平焊和立焊位置;杆伸长度大于25.4毫米,则易发生在仰焊位置。焊丝的杆伸长度控制,在焊接过程中对确保焊接质量至关重要。
半自动FCAW下向焊接在不同的工艺参数下操作,大致会产生三种熔滴过渡现象。即短路过渡、大颗粒过渡、细颗粒过渡。在管道全位置下向焊接工艺中,通用的是综合工艺参数。这个参数适用于立焊要求,平焊相对较低,仰焊相对较高。在小参数下,如在电弧电压低、推力电流小、送丝速度快等不匹配的参数下操作,为短路过渡。由于电压较低、弧长缩短,熔滴还未缩颈便与熔池金属接触,则在表面张力、重力作用下完成过渡、爆炸和再引弧产生冲击力,使熔池向斜上方抛出。其中较大尺寸颗粒会落入熔池,较小颗粒的液态金属则飞出焊接区,形成飞溅,在中等参数下,产生大颗粒过渡。由于电压升高,弧长变长,熔滴在焊丝端部长得较大。当熔滴向熔池方向运动大于其运动方向的阻力时,熔滴脱离焊丝端部,一般沿着稍偏离焊丝轴线的路径,自由落入熔池。在强参数下,即大电流、高电压焊接时,会发生细颗粒过渡。这时,熔滴尺寸均匀,过渡路径为非轴向过渡,电弧弧根直径大于焊丝端部熔滴直径,弧根覆盖在熔滴的下表面。此时,焊丝端部与熔滴之间的缩颈加快、熔滴尺寸减小,沿非轴向路径呈细颗粒状滴落过渡到熔池中。细颗粒过渡易造成焊缝增宽、焊缝薄、盖面焊咬边、熔池因失去自保护产生气孔或金属冷凝速度过快、焊缝中的氢气来不及排出产生气孔等现象。
半自动FCAW焊接工艺是一门新兴的焊接方法,虽然操作简单、易学,但想把这门工艺学深、学透、学精还需要下一番工夫。
参考资料:
1.
半自动FCAW下向焊接工艺在管道施工中的应用