当前位置:首页 » 焊接工艺 » 什么焊接属于滴状过渡

什么焊接属于滴状过渡

发布时间: 2021-02-17 14:49:54

1. 焊条电弧焊中,以下哪种力,无论在什么焊接,状态都有利于熔滴过渡

气体吹力和电磁力

2. 焊接熔滴过渡与电流的关系是什么

焊接熔滴过渡与电流的关系以CO2气体保护焊为例。
一、 短路过渡焊接
CO2电弧焊中短路过渡应用最广泛,主要用于薄板及全位置焊接,规范参数为电弧电压焊接电流、焊接速度、焊接回路电感、气体流量及焊丝伸出长度等。
1、电弧电压和焊接电流:
对于一定的焊丝直径及焊接电流(即送丝速度),必须匹配合适的电弧电压,才能获得稳定的短路过渡过程,此时的飞溅最少。
不同直径焊丝的短路过渡时参数如表:
焊丝直径(㎜) 电弧电压(V) 焊接电流(A)
Φ0.8 18 100-110
Φ1.2 19 120-135
Φ1.6 20 140-180
2、 焊接回路电感,电感主要作用:
(1)、调节短路电流增长速度电流/电压 过小发生大颗粒飞溅至焊丝大段爆断而使电弧熄灭,电流/电压 过大则产生大量小颗粒金属飞溅。
(2)、调节电弧燃烧时间控制母材熔深。
(3)、焊接速度。焊接速度过快会引起焊缝两侧吹边,焊接速度过慢容易发生烧穿和焊缝组织粗大等缺陷。
(4)、气体流量大小取决于接头型式板厚、焊接规范及作业条件等因素。通常细丝焊接时气流量为5-15 L/min,粗丝焊接时为20-25 L/min。
(5)、焊丝伸长度。合适的焊丝伸出长度应为焊丝直径的10-20倍。焊接过程中,尽量保持在10-20㎜范围内,伸出长度增加则焊接电流下降,母材熔深减小,反之则电流增大熔深增加。电阻率越大的焊丝这种影响越明显。
(6)、电源极性。CO2电弧焊一般采用直流反极性时飞溅小,电弧稳定母材熔深大、成型好,而且焊缝金属含氢量低。
二、 细颗粒过渡
1、在CO2气体中:
对于一定的直径焊丝,当电流增大到一定数值后同时配以较高的电弧压,焊丝的熔化金属即以小颗粒自由飞落进入熔池,这种过渡形式为细颗粒过渡。
细颗粒过渡时电弧穿透力强母材熔深大,适用于中厚板焊接结构。细颗粒过渡焊接时也采用直流反接法。
2、 达到细颗粒过渡的电流和电压范围:
焊丝直径 电流下限值(A) 电弧电压(V)
Φ1.2 300 32-34
Φ1.6 400 34-36
Φ2.0 500 36-38
随着电流增大电弧电压必须提高,否则电弧对熔池金属有冲刷作用,焊缝成形恶化,适当提高电弧电压能避免这种现象。然而电弧电压太高飞溅会显著增大,在同样电流下,随焊丝直径增大电弧电压降低。CO2细颗粒过渡和在氩弧焊中的喷射过渡有着实质性差别。氩弧焊中的喷射过渡是轴向的,而CO2中的细颗粒过渡是非轴向的,仍有一定金属飞溅。另外氩弧焊中的喷射过渡界电流有明显较变特征。(尤其是焊接不锈钢及黑色金属)而细颗粒过渡则没有。

3. 熔滴过渡形态 焊接工艺条件(例) 1. 自由过渡 1.1 颗粒过渡 1.1.1滴状过渡 低电流GMA 1.1.2 偏离过渡 CO2

请把问题说详细些

4. 熔滴过渡的自由过渡

熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。 焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩短拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
(1)轴向滴状过渡:焊条电弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池,这种过渡形式称为滴状过渡。
(2)非轴向滴状过渡:多原子气氛(CO2、N2、H2)中,阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅,称为熔滴的非轴向滴状过滤。 熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式,称为喷射过渡,喷射过渡可分为射滴过渡和射流过渡两种形式。
(1)射滴过渡:在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的速度沿焊丝轴向射向熔滴的过渡形式,称为射滴过渡。
(2)射流过渡:在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式,称为射流过渡。这些直径远小于焊丝直径的熔滴过渡,频率很高,看上去好像是在焊丝端部存在一条流向熔池的金属液流。

5. 熔滴过渡的种类介绍

熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩短拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。
(1)轴向滴状过渡:焊条电弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池,这种过渡形式称为滴状过渡。
(2)非轴向滴状过渡:多原子气氛(co2、n2、h2)中,阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅,称为熔滴的非轴向滴状过滤。
熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式,称为喷射过渡,喷射过渡可分为射滴过渡和射流过渡两种形式。
(1)射滴过渡:在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的速度沿焊丝轴向射向熔滴的过渡形式,称为射滴过渡。
(2)射流过渡:在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式,称为射流过渡。这些直径远小于焊丝直径的熔滴过渡,频率很高,看上去好像是在焊丝端部存在一条流向熔池的金属液流。

6. 仰焊的熔滴过度主要靠什么

电弧焊时,在焊条(或焊丝)端部形成的熔滴通过电弧空间向熔池转移的过程,称为熔滴过渡。
金属熔滴向熔池过渡的形式主要有粗滴过渡、短路过渡、喷射过渡及渣壁过渡等。
对于所有的熔化极电弧焊说,熔滴过渡的促进力基本上是相同的。过渡熔滴的大小随着焊接方法和工艺参数的不同而不同,有些情况下比焊丝直径大得多。熔滴穿过电弧进行过渡的方式受表面张力、等离子流力、重力以及具有收缩效应的电磁力等控制。熔滴上受到的这些力的合力决定了熔滴过渡的具体方式。
液态的表面张力总是使液体自身收缩到尽可能小的区域中。无论什么焊接位置下,熔滴的表面张力总是使熔滴保持在焊丝上。因此该力具有阻止熔滴穿过电弧向熔池过渡的作用。在仰焊和立焊位置下,熔池中液态金属的表面张力趁着将液态保护在熔池中的作用。在短路过渡昔,与未熔化工件交接外的熔滴表面张力具有促进熔滴过渡的作用。
电弧弧柱中心有一高温等离子束流,该等离子束流由焊丝向工件高速运动,使熔滴受到从焊丝指向工件的推力,加速熔滴向熔池过渡。在某些情况下,等离子束流力还干扰滴过渡。
重力总是指向下方,因此当工件位于焊丝下方时,重力促进熔滴过渡,但当工件位于焊丝上方时,熔滴重力阻止熔滴过渡。只有在焊接电流很小时,重力对熔滴过渡才会有显著的作用。
电流流过焊丝时,焊丝周围产生一磁场。该磁场使熔滴中运动着的带电粒子受到库伦力,该库伦力就是电磁力。焊接电流较大时,电磁力使焊丝端部即将脱离的熔滴受到显著的收缩作用,该收缩效应能够促进熔滴过渡。在电磁力的作用下熔滴与焊丝交界处逐渐收缩,产生缩颈现象。缩颈产生后,缩颈部位上下的熔滴受到方向不同的作用力,缩颈部位下面的部分继续受到电磁力的推进作用,使其脱落,完成过渡工。因此,该电磁力又叫电磁收缩力(图6.12)。收缩力的大小与电流的平方成正比。图6.13给出的焊接电弧高速度摄像照片显示了熔滴过渡过程。在图6.13(a)中,熔滴产生缩颈;在图6.13(b)中,熔滴刚刚脱落;而图6.13c及d中,熔滴在电弧中飞行。电流大小的变化速度对于收缩效应有很大的影响,而电流大小的变化速度决定于电源的电流输出斜率。采用脉冲电流时,电磁收缩效应对熔滴过渡的促进作用显著增大。

电磁力还在熔滴内部形成了一定的压力。最大的压力位于焊丝中心线上。在电流很大时,该压力使熔滴拉长。电磁收缩力还使熔滴具有一定的刚直性,这样,不论在任何焊接位置下均能使熔滴沿着焊丝轴线运动。
熔滴过渡方式取决于焊接方法、被焊材料、电弧气氛、焊丝直径、焊丝成分、焊丝的极性、电源特性,焊接位置、焊接电流大小、电流密度及热输入等。熔化极气体保护焊时通常采用直流反极性接法时,焊丝表面通常需要涂活性层,。
穿过电弧空间进行的熔滴过渡称为自由过渡。自由过渡包括喷射过渡和滴状过渡。另外,弧长较短时,还会通过接触过渡,这种过渡称为短路过渡。熔滴过渡常用的进一步分类方法是根据熔滴的尺寸及过渡频率。在四种常见熔滴过渡:
喷射过渡;
滴状过度;
短路过渡;
脉冲喷射过渡。
这四种过渡方式为特点各不相同的典型过渡形式。另外,焊接工艺参数选择在两种典型熔滴过渡形式的工艺范围之过渡区内时,还可能会出现介于两种过渡形式之间的混合过渡形式,两种过渡可能会同时出现。熔滴过渡茅坑于焊接过程的稳定性及冶金反应均具有重大的影响。焊接工艺通常按照熔滴过渡方式进行分类。

7. 您好!请问熔化极气体保护焊全位置焊接时,可以采用哪些熔滴过渡形式

你好,可以来使用短路过渡和射源流过渡,完全看你的掌握的。帮你找的资料如下:
短路过渡主要用于直径小于1.6mm的细丝CO2气体保护焊或混合气体保护焊,采用低电压,小电流的焊接工艺。由于电压低,电弧较短,熔滴尚未长大成熔滴时即与熔池接触而形成短路液体过桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去,这样的过渡形式称为短路过渡。这种过渡电弧稳定,飞溅较小,熔滴过渡频率高,焊缝成形良好,广泛用于薄板结构、根部打底焊及全位置焊接。
射流过渡
射流过渡是喷射过渡中最富有代表性的且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩气或富氩气体保护,大电压,还必须使焊接电流大于临界值。射流过渡电弧稳定,飞溅极少,焊缝成形质量好。由于电弧稳定,对保护气流的扰动作用小,故保护效果好。射流过渡电弧功率大,热流集中,对焊件的熔透能力强。而且过渡的熔滴沿电弧轴线高速流向熔池,使焊缝中心部位熔深明显增大而呈指状熔深
望采纳,谢谢。

8. 二氧化碳气体保护焊的过渡形式有几种谢谢了

对于CO2气体保护焊而言,主要存在三种熔滴过渡形式,即短路过渡、滴状过渡、射滴过渡。以下简过这三种过渡形式的特点、与工艺参数(主要是电流、电压)的关系以及其应用范围。
短路过渡。短路过度是在细焊丝、低电压和小电流情况下发生的。焊丝熔化后由于斑点压力对熔滴有排斥作用,使熔滴悬挂于焊丝端头并积聚长大,甚至与母材的深池相连并过渡到熔池中,这就是短路过渡形式,见下图:

1)过渡主要特征是短路时间和短路频率。影响短路过渡稳定性的因素主要是电压,电压约为18~21V时,短路时间较长,过程较稳定。
焊接电流和焊丝直径也即焊丝的电流密度对短路过渡过程的影响也很大。在表(1)中列出了不同焊丝直径时的允许电流范围和最佳电流范围。在最佳电流范围内短路频率较高,短路过渡过程稳定,飞溅大,必须采取增加电路电感的方法以降低短路电流的增长速度,避免产生熔滴的瞬时爆炸和飞溅。另外一个措施是采用Ar-CO2混合气体(各约50%),因富Ar气体下斑点压力较小,电弧对熔滴的排斥力较小,过程比较稳定和平静。细焊丝工作范围较宽,焊接过程易于控制,粗焊丝则工作范围很窄,过程难以控制。因此只有焊丝直径在ф1.2mm以下时,才可能采用短路过渡形式。短路过渡形式一般适用于薄钢板的焊接。
CO2气体保护焊稳定短路过渡时不同焊丝直径的电流范围
焊丝直径(mm)

允许电流(A)

最佳电流(A)

0.8

60~160

60~100

1.0

70~240

70~120

1.2

90~260

90~175

1.6

110~290

110~200

2.0

120~350

120~250

2)滴状过渡。滴状过渡是在电弧稍长,电压较高时产生的,此时熔滴受到较大的斑点压力、熔滴在CO2气氛中一般不能沿焊丝轴向过渡到熔池中,而是偏离焊丝轴向,甚至于上翘,如下图所示。由于产生较大的飞溅,因此滴状过渡形式在生产中很难采用。只有在富氩混合气焊接时,熔滴才能形成向过渡和得到稳定的电弧过程。但因富氩气体的成本是纯CO2气体的几倍,在建筑钢结构的生产和施工安装中应用较少。
3)射滴过渡。CO2气体保护焊的射滴过渡是一种自由过渡的形式,但其中也伴有瞬时短路。它是在φ1.6~3.0的焊丝,大电流条件下产生的,是一种稳定的电弧过程。
焊丝直径φ1.2~3.0时,如电流较大,电弧电压较高,能产生如前所述的滴状过渡,但如电弧电压降低,电弧的强烈吹力将会排除部分熔池金属,而使电弧部分潜入熔池的凹坑中,随着电流增在则焊丝端头几乎全部潜入熔池,同时熔滴尺寸减小,过渡频率增加,飞溅明显降低,形成典型的射滴过渡,如下所示。但电流增大有一定限度,电流过大时,电弧力过大,会强烈扰动熔池,破坏焊接过程。
由于射滴过渡对电源动特性要求不高,而且电流大,熔敷速度高,适合于中厚板的焊接,不易出现未熔合缺陷,但由于熔深大,熔宽也大,射滴过渡用于空间位置焊接时,焊缝成形不易控制。

9. 请问,焊接时。金属熔化过渡方式,有哪些各有什么特点

什么是熔滴的自由过渡?
熔滴从焊丝端头脱落后,通过电弧空间自由运动一段距离后落入熔池的过渡形式称为自由过渡。因条件不同,熔滴的自由过渡又可分为滴状过渡和喷射过渡两种形式。
(1)滴状过渡 焊接电流较小时,熔滴的直径大于焊丝直径,当熔滴的尺寸足够大时,主要依靠重力将熔滴缩颈拉断,熔滴落入熔池,熔滴的这种过渡形式称为滴状过渡。滴状过渡有两种形式:
1)轴向滴状过渡 手弧焊、富氩混合气体保护焊时,熔滴在脱离焊条(丝)前处于轴向(下垂)位置(平焊时),脱离焊条(丝)后也沿焊条(丝)轴向落入熔池的过渡形式称为滴状过渡,见图28a。

2)非轴向滴状过渡 在多原子气氛中(CO2、N2、H2),阻碍熔滴过渡的力大于熔滴的重力,熔滴在脱离焊丝之前就偏离焊丝轴线,甚至上翘,在脱离焊丝之后,熔滴一般不能沿焊丝轴向过渡,形成飞溅称为熔滴非轴向滴状过渡。
(2)喷射过渡 熔滴呈细小颗粒并以喷射状态快速通过电弧空间向熔池过渡的形式称为喷射过渡。喷射过渡还可分为射滴过渡和射流过渡两种形式:
1)射滴过渡 在某些条件下,形成的熔滴尺寸与焊丝直径相近,焊丝金属以较明显的分离熔滴形式和较高的加速度沿焊丝轴向射向熔池的过渡形式称为射滴过渡,见图29a。

2)射流过渡 在某些条件下,因电弧热和电弧力的作用,焊丝端头熔化的金属被压成铅笔尖状,以细小的熔滴从液柱尖端高速轴向射入熔池的过渡形式称为射流过渡。这些直径远小于焊丝直径的熔滴过渡频率很高,看上去好像在焊丝端部存在一条流向熔池的金属液流,见图29b。
什么是熔滴的短路过渡?
焊条(或焊丝)端部的熔滴与熔池短路接触,由于强烈过热和
磁收缩的作用使熔滴爆断,直接向熔池过渡的形式称为短路过渡,见图30。熔滴的短路过渡频率可达20~200次/s。

29、什么是熔滴的混合过渡?
在一定条件下,熔滴过渡不是单一形式,而是自由过渡与短路过渡的混合形式,这就称为熔滴的混合过渡。例如,管状焊丝气体保护电弧焊及大电流CO2气体保护电弧焊时,焊丝金属有时就是以混合过渡的形式向熔池过渡。
30、试述熔滴过渡时产生飞溅的原因。
熔焊时,在熔滴过渡过程中,一部分熔滴溅落到熔池以外的现象称为飞溅。
产生飞溅的原因有以下几个方面:
(1)气体爆炸引起的飞溅 用涂料焊条焊接及活性气体保护焊时,由于冶金反应在液体内部将产生大量CO气体,气体的析出十分猛烈,尤如爆炸,使液体金属发生粉碎形的熔滴,溅落在焊缝两侧的母材上,成为飞溅。
(2)斑点压力引起的飞溅 电弧中的带电质点——电子和阳离子,在电场的作用下向两极运动,撞击在两极的斑点上产生机械压力,称为斑点压力。斑点压力是阻碍熔滴过渡的力,焊条端部的熔滴在斑点压力的作用下,十分不稳定,不断地跳动,有时被顶到焊丝的侧面,甚至使熔滴上挠,最终在重力和斑点压力的共同作用下,脱离焊丝成为飞溅。手弧焊和CO2气体保

护焊采用直流正接时经常会发生这种类型的飞溅。
(3)短路过渡引起的飞溅 CO2气体保护焊采用短
路过渡时,在短路的最后阶段,如果还继续增大焊接电流,这时的电磁收缩力使熔滴往上飞起,引起强烈飞溅。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506